Advertisement

Journal of Theoretical Probability

, Volume 13, Issue 1, pp 93–134 | Cite as

\(\mathfrak{S}\)-Uniform Scalar Integrability and Strong Laws of Large Numbers for Pettis Integrable Functions with Values in a Separable Locally Convex Space

  • Charles Castaing
  • Paul Raynaud de Fitte
Article

Abstract

Generalizing techniques developed by Cuesta and Matrán for Bochner integrable random vectors of a separable Banach space, we prove a strong law of large numbers for Pettis integrable random elements of a separable locally convex space E. This result may be seen as a compactness result in a suitable topology on the set of Pettis integrable probabilities on E.

strong law of large numbers pairwise independent Pettis Skorokhod's representation \(\mathfrak{S}\)-uniformly scalarly integrable Kantorovich functional Lévy–Wasserstein metric Young measures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Alexopoulos, J. (1994). de la Vallée Poussin's theorem and weakly compact sets in Orlicz spaces. Quaest. Math. 17, 231–248.CrossRefGoogle Scholar
  2. 2.
    Amrani, A., and Castaing, C. (1997). Weak compactness in Pettis integration. Bull. Polish Acad. Sci. Math. 45, 231–248.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Amrani, A., Castaing, C., and Valadier, M. (1998). Convergence in Pettis norm under extreme point condition. Vietnam J. of Math. 26, 323–335.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Balder, E. J. (1995). Lectures on Young measures. Cahiers de mathématiques de la décision 9517, CEREMADE, Université Paris-Dauphine.Google Scholar
  5. 5.
    Bickel, P. J., and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. Ann. Stat. 9, 1196–1217.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Billingsley, P. (1968). Convergence of Probability Measures, John Wiley, New York, London.zbMATHGoogle Scholar
  7. 7.
    Bourbaki, N. (1974). Topologie Générale, Chap. 5 à 10. Diffusion C.C.L.S., Paris, 2nd edition.Google Scholar
  8. 8.
    Bourbaki, N. (1981) Espaces Verctoriels Topologiques, Masson, Paris, 2nd edition.Google Scholar
  9. 9.
    Castaing, C. (1996). Weak compactness and convergence in Bochner and Pettis integration. Vietnam J. Math. 24, 241–286.MathSciNetGoogle Scholar
  10. 10.
    Castaing, C., and Valadier, M. (1997). Weak convergence using Young measures. Submitted.Google Scholar
  11. 11.
    Christensen, J. P. R. (1974). Topology and Borel Structure, North-Holland, Amsterdam, London.Google Scholar
  12. 12.
    Csörgö, S., Tandori, K., and Totik, V. (1983). On the strong law of large numbers for pairwise independent random variables. Acta Math. Hung. 42, 319–330.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cuesta, J. A., and Matrán, C. (1988). Strong convergence of weighted sums of random elements through the equivalence of sequences of distributions. J. Multivar. Anal. 25, 311–322.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cuesta, J. A., and Matrán, C. (1992). A review on strong convergence of weighted sums of random elements based on Wasserstein metrics. J. Statist. Planning Inference 30, 359–370.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cuesta-Albertos, J. A., and Matrán-Bea, C. (1994). Stochastic convergence through Skorohod representation theorems and Wasserstein distances. Supplemento di Rendiconti del Circolo Matematico di Palermo, Serie II 35, 89–113.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Diestel, J. (1991). Uniform integrability: An introduction. Rendiconti dell'instituto di matematica dell'Università di Trieste. School on Measure Theory and Real Analysis Grado Italy, 23, 41–80.Google Scholar
  17. 17.
    Dilworth, S. J., and Girardi, M. (1993). Bochner vs. Pettis norm: Examples and results. In Banach spaces. Proceedings of an international workshop on Banach space theory, held at the Universidad de Los Andes, Merida, Venezuela, January 6–17, 1992, American Mathematical Society, Providence, Rhode Island, Contemporary Math. 144, 69–80.Google Scholar
  18. 18.
    Etemadi, N. (1981). On the laws of large numbers for nonnegative random variables. J. Multivariate Anal. 13, 187–193.MathSciNetCrossRefGoogle Scholar
  19. 20.
    Fernique, X. (1967). Processus linéaires, processus généralisés, Ann. Inst. Fourier 17, 1–92.MathSciNetCrossRefGoogle Scholar
  20. 21.
    Fernique, X. (1988). Un modèle presque sûr pour la convergence en loi. C. R. Acad. Sci. Paris Sér. 306, 335–338.MathSciNetzbMATHGoogle Scholar
  21. 22.
    Fernique, X. (1994). Une caractérisation des espaces de Fréchet nucléaires. In Hoffmann Jørgensen, J. (ed.), Probability in Banach Spaces, 9: Proc. Int'l. Conf. Banach Spaces, Sandjberg, Denmark, August 16–21, 1993, Birkhäuser, Boston, pp. 173–181.CrossRefGoogle Scholar
  22. 23.
    Geitz, R. (1981). Pettis integration. Proc. Amer. Math. Soc. 82, 81–86.MathSciNetCrossRefGoogle Scholar
  23. 24.
    Hoffmann-Jørgensen, J. (1985). The law of large numbers for nonmeasurable and non-separable random elements. Astérisque 131, 299–356.Google Scholar
  24. 25.
    Ionescu Tulcea, A. and C. (1969). Topics in the Theory of Liftings, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  25. 26.
    Jakubowski, A. (1997). The almost sure Skorokhod representation for subsequences in nonmetric spaces. Theor. Prob. Appl., pp. 209–216.Google Scholar
  26. 27.
    Jiřina, M. (1959). On regular conditional probabilities. Czechoslovak Math. J. 9, 445–451.MathSciNetzbMATHGoogle Scholar
  27. 28.
    Kelley, J. L. (1955). General Topology, Springer-Verlag, Berlin.zbMATHGoogle Scholar
  28. 29.
    Krasnoselkiî, M. A., and Rutickiî, Y. B. (1961). Convex Functions and Orlicz Spaces, P. Nordhoff Ltd. Groningen.Google Scholar
  29. 30.
    Loève, M. (1963). Probability Theory, Third Edition, Van Nostrand, Princeton, New Jersey.zbMATHGoogle Scholar
  30. 31.
    McCoy, R. A., and Ntantu, I. (1988). Topological Properties of Spaces of Continuous Functions, No. 1315 in Lecture Notes in Math., Springer-Verlag, Berlin.CrossRefGoogle Scholar
  31. 32.
    Musiał, K. (1987). Vitali and Lebesgue theorems for Pettis integral in locally convex spaces. Atti Sem. Mat Fis. Modena 25, 159–166.MathSciNetzbMATHGoogle Scholar
  32. 33.
    Musiał, K. (1991). Topics in the theory of Pettis integration. Tendiconti dell'instituo di matimatica dell'Università di Trieste, School on Measure Theory and Real Analysis Grado, Italy, Vol. 23, pp. 179–262.Google Scholar
  33. 34.
    Musiał, K. (1994). A few remarks concerning the strong law of large numbers for non-separable Banach space valued functions. Rendiconti dell'istituto di matematica dell'Università di Trieste, School on Measure Theory and Real Analysis Grado, Italy, Vol. 26, pp. 221–242.Google Scholar
  34. 35.
    Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces, Acad. Press, New York, London.CrossRefGoogle Scholar
  35. 36.
    Piccinini, L., and Valadier, M. (1995). Uniform integrability and Young measures. J. Math. Anal. Appl. 195, 428–439.MathSciNetCrossRefGoogle Scholar
  36. 37.
    Prokhorov, Y. V. (1956). Convergence of random processes and limit theorems in probability theory. Theory Prob. Appl. 1, 157–214.MathSciNetCrossRefGoogle Scholar
  37. 38.
    Rachev, S. T. (1991). Probability Metrics and the Stability of Stochastic Models, John Wiley, Chichester, New York.zbMATHGoogle Scholar
  38. 39.
    Schaefer, H. H. (1966). Topological Vector Spaces, Macmillan, New York.zbMATHGoogle Scholar
  39. 40.
    Schwartz, L. (1973). Radon measures on arbitrary topological spaces and cylindrical measures, Tata Institute of Fundamental Research Studies in Mathematics, Oxford University Press, London.zbMATHGoogle Scholar
  40. 41.
    Skorokhod, A. V. (1956). Limit theorems for stochastic processes. Theory Prob. Appl. 1, 261–290.MathSciNetCrossRefGoogle Scholar
  41. 42.
    Talagrand, M. (1987). The Glivenko-Cantelli problem. Ann. Prob. 15, 837–870.MathSciNetCrossRefGoogle Scholar
  42. 43.
    Thomas, G. E. F. (1975). Integration of functions with values in locally convex Suslin spaces. Trans. Amer. Math. Soc. 212, 61–81.MathSciNetCrossRefGoogle Scholar
  43. 44.
    Topsøe, F. (1970). Topology and Measure. No. 133 in Lecture Notes in Math., Springer-Verlag, Berlin.CrossRefGoogle Scholar
  44. 45.
    Uhl, Jr. J. J. (1972). A characterization of strongly measurable Pettis integrable functions. Proc. Amer. Math. Soc. 34, 425–427.MathSciNetCrossRefGoogle Scholar
  45. 46.
    Valadier, M. (1970). Contribution à l'Analyse Convexe, Ph.D. thesis, Faculté des Sciences de Paris (thése de doctorat es-sciences).Google Scholar
  46. 47.
    Valadier, M. (1973). Désintégration d'une mesure sur un produit. C. R. Acad. Sci. Paris Sér. I, p. 276.Google Scholar
  47. 48.
    Valadier, M. (1994). A course on Young measures. Rendiconti dell 'instituto di matematica dell'Università di Trieste 26, Workshop di Teoria della Misura et Analisi Reale Grado (Italia).Google Scholar
  48. 49.
    van der Vaart, A. W., and Wellner, J. A. (1996). Weak Convergence and Empirical Processes with Applications to Statistics, Springer Series in Statistics, Springer-Verlag, Berlin.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Charles Castaing
  • Paul Raynaud de Fitte

There are no affiliations available

Personalised recommendations