Skip to main content
Log in

Breeding chickpea (Cicer arietinum [Fabaceae]) for better seed quality inadvertently increased susceptibility to adzuki bean beetle (Callosobruchus chinensis [Coleoptera: Bruchidae])

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Continuous breeding efforts in Ethiopia resulted in the release of 15 improved chickpea (Cicer arietinum L.) varieties with improved yield, seed quality, disease resistance and better adaptation to different production zones within Ethiopia. This study was conducted to examine whether breeding for increased yield and other important agronomic traits without direct selection for resistance to the adzuki bean beetle (Callosobruchus chinensis L.) has inadvertently resulted in a significant level of susceptibility to this seed pest within the new cultivars. Field and laboratory studies were conducted to see whether breeding for better seed quality has increased susceptibility to infestation by the adzuki bean beetle. Seeds of 130 accessions/genotypes were infested with the beetle in 2009 under ambient temperature and relative humidity at Holetta, Ambo and Debre Zeit, Ethiopia. Data were recorded on attributes of infestation level and seed damage. Data on seed size, proportion of seed coat and grain yield were collected from a replicated field trial conducted with the same accessions/genotypes grown under the same conditions in 2009/10 at Ginchi and Ambo, Ethiopia. Differences among the genotypes were significant for most traits with the exception of the number of uninfested seeds. Accessions with partial resistance include 41320, 41289, 41291, 41134, 41315, 207658, 41103, 41168, 41142, 41174, 41029, 41207, 209087, 231327, 41161 and 41008. The improved varieties were more susceptible than germplasm accessions. The results indicate that genetic progress was achieved both in grain yield and seed size, but breeding efforts for these traits had also inadvertently increased seed susceptibility to C. chinensis. Improvements in seed size resulted in higher infestation levels and seed damage. Future breeding to improve seed quality should simultaneously consider corrective measures to incorporate resistance to the adzuki bean beetle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta-Gallegos J. A., Kelly J. D. and Gepts P. (2008) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Science 48, 3–16.

    Google Scholar 

  • Ahmed K., Khalique F., Afzal M., Tahir M. and Malik B. A. (1989) Variability in chickpea (C. arietinum L.) genotypes for resistance to Callosobruchus maculates F. (Bruchidae). Journal of Stored Products Research 25, 91–99.

    Article  Google Scholar 

  • Alemayehu M. (2005) Post harvest losses in chickpea caused by bruchids and management of Callosobruchus chinensis using botanicals in Enemay Woreda. MSc thesis, Alemaya University, Ethiopia.

    Google Scholar 

  • Ali K. and Habtewold T. (1994) Research on insect pests of cool-season food legumes, pp. 367–396. In Cool-Season Food Legumes of Ethiopia. Proceedings of the First National Cool-Season Food Legumes Review Conference, 16–20 December 1993, Addis Ababa, Ethiopia. ICARDA/IAR. ICARDA, Syria.

    Google Scholar 

  • Aslam M., Shaheen F. A., Abbas M. A. and Saba A. (2006) Management of Callosobruchus chinensis Linnaeus through use of resistance in stored chickpea varieties. World Journal of Agricultural Sciences 2, 82–84.

    Google Scholar 

  • Bejiga G. and van der Maesen L. J. G. (2006) Cicer arietinum L., pp. 42–46. In Plant Resources of Tropical Africa 1: Cereals and Pulses. PROTA Foundation, Wageningen, Netherlands/Backhuys Publishers, Leiden, Netherlands/CTA, Wageningen, Netherlands.

    Google Scholar 

  • Bekele E. (1985) The biology of cereal landrace population I. Problems of gene conservation, plant breeding selection schemes and sample size requirement. Hereditas 103, 119–134.

    Article  Google Scholar 

  • Bezawuletaw K. (1999) Genetic gain in grain yield potential and associated agronomic traits in Ethiopian haricot bean (Phaseolus vulgarus L) varieties. MSc thesis, Alemaya University, Ethiopia.

    Google Scholar 

  • Central Statistics Agency/CSA (2009) Agricultural Sample Survey 2008/2009 (2001 E.C.), Volume I: Area and Production of Crops, Addis Ababa, Ethiopia.

    Google Scholar 

  • Chen H. M., Liv C. A., Kuo C. G., Chien C. M., Sun H. C., Huang C. C., Lin Y. C. and Ku H. M. (2007) Development of molecular marker for a bruchid (Callosobruchus chinensis) resistance gene in mungbean. Euphytica 157, 113–122.

    Article  CAS  Google Scholar 

  • Cox T. S., Ben-Huli L. S., Stears R. G. and Martin T. J. (1988) Genetic improvement in agronomic traits of hard red winter wheat cultivars from 1919 to 1987. Crop Science 28, 756–760.

    Article  Google Scholar 

  • Cubero J. I. (1987) Morphology of chickpea, pp. 35–66. In The Chickpea. C.A.B. International, Wallingford, Oxon.

    Google Scholar 

  • Damte T. and Dawd M. (2006) Chickpea, lentil and grass pea insect pest research in Ethiopia: a review, pp. 260–273. In Food and Forage Legumes of Ethiopia: Progress and Prospects. Proceedings of a Workshop on Food and Forage Legumes, 22–26 September 2003, Addis, Ababa, Ethiopia. ICARDA, Aleppo, Syria.

    Google Scholar 

  • Desroches P., Elshazly E., Mandon N., Duc G. and Huignard J. (1995) Development of Callosobruchus chinensis (L.) and C. maculatus (F.) (Coleoptera: Bruchidae) L. in seeds of Vicia f aba differing in tannin, convicine and vicine contents. Journal of Stored Products Research 31, 83–89.

    Article  CAS  Google Scholar 

  • EARO (Ethiopian Agricultural Research Organization) (2000) National Crop Research Strategy. Ethiopian Agricultural Research Organization (EARO), Addis Ababa, Ethiopia. 52 pp.

    Google Scholar 

  • Egli D. B. (2008) Soybean yield trends from 1972–2003 in mid-western USA. Field Crops Research 106, 53–59.

    Article  Google Scholar 

  • Falconer D. S. (1989) Introduction to Quantitative Genetics, 3rd edn. Longman, London.

    Google Scholar 

  • Fekadu W. (2010) Assessment of genetic improvement in grain yield potential, malting quality and associated traits of barley (Hordeum vulgare L.) in Ethiopia. MSc thesis, Haramaya University, Ethiopia.

    Google Scholar 

  • Gomez K. A. and Gomez A. (1984) Statistical Procedures for Agricultural Research. John Wiley & Sons, New York.

    Google Scholar 

  • IBPGR, ICRISAT and ICARDA (1993) Descriptor for Chickpea (Cicer arietinum L.). IBPGR, Rome Italy/ICRISAT, Patancheru, India/ICARDA, Aleppo, Syria.

    Google Scholar 

  • Jarso M., Keneni G. and Wolabu T. (2011) Enhancing the technical relevance of pulses and oilseed crops through target oriented breeding, pp. 45–65. In Oilseeds: Engine for economic development. Proceedings of the Second National Oilseeds Workshop, 24–26 March 2010, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia.

    Google Scholar 

  • Kassie M., Shiferaw B., Asfaw S., Abate T., Muricho G., Ferede S., Eshete M. and Assefa K. (2009) Current situation and future outlooks of the chickpea sub-sector in Ethiopia. ICRISAT and EIAR https://doi.org/www.icrisat.org/tropicallegumesII/pdfs/Current_Situation.pdf

    Google Scholar 

  • Keneni G. and Simane B. (2003) Implications of geographic origin and botanical sub-species for parental selection in genetic enhancement of groundnut (Arachis hypogaea L.). Journal of Genetics and Breeding 57, 93–100.

    Google Scholar 

  • Keneni G. and Wakjira A. (2004) Genetic uniformity of crop cultivars: challenges and opportunities, pp. 1–9. In SEBIL. Vol. 10. Proceedings of the 10th Annual Conference of the Crop Science Society of Ethiopia. 19–21 June 2001, EARO, Addis Ababa, Ethiopia.

    Google Scholar 

  • Keneni G., Bekele E., Getu E., Imtiaz M., Dagne K. and Asefa F. (2011) Characterization of Ethiopian chickpea (Cicer arietinum L.) germplasm accessions for response to infestation by Adzuki bean beetle (Callosobruchus chinensis L.). I. Performance evaluation. Ethiopian Journal of Agricultural Sciences 21 (1&2), 41–65.

    Google Scholar 

  • Keneni G., Jarso M. and Asmamaw B. (2002) The role of drainage and genotype in improving productivity of faba bean on waterlogged Vertisols. Ethiopian Journal of Natural Resources 4, 49–60.

    Google Scholar 

  • Lale N. E. S. and Kolo A. A. (1998) Susceptibility of eight genetically improved local cultivars of cowpea to Callosobruchus maculatus F. (Coleoptera: Bruchidae) in Nigeria. International Journal of Pest Management 44, 25–27.

    Article  Google Scholar 

  • Lemma L. (1990) The biology and control of the adzuki been beetle (Callosobruchus chinensis L.) on chickpea (Cicer arietinum L.). MSc thesis, Alemaya University, Ethiopia.

    Google Scholar 

  • Lirie E. (2010) Genetic gain and genotype x environment interaction in grain yield, oil content and associated traits of linseed (Linum usitatissimum L.) in Ethiopia. MSc thesis, Haramaya University, Ethiopia.

    Google Scholar 

  • Little T. M. and Hills F. J. (1978) Agricultural Experimentation: Design and Analysis. John Wiley and Sons, New York. 350 pp.

    Google Scholar 

  • MoARD/Ministry of Agriculture and Rural Development (2009) CROP Variety Register. Issue No. 12. Addis Ababa, Ethiopia.

  • Muehlbauer F. J. and Tullu A. (1997) Cicer arietinum L. NewCROP FactSHEET: http://www.hort.purdue.edu/newcrop/cropfactsheets/chickpea.html#Origin

    Google Scholar 

  • Pacheco I. A., Bolonhezi S., Sartori M. R., Turatti J. M., Paula D. C. and de Lourencao A. L. (1994) Resistance to bruchids, fatty acid composition and grain texture in genotypes of chickpea. Bragantia 53, 61–74.

    Article  CAS  Google Scholar 

  • Rubenstein D. K., Heisey P., Shoemaker R., Sullivan J. and Frisvold G. (2005) Crop genetic resources: An economic appraisal. United States Department of Agriculture (USDA). Economic Information Bulletin No. 2, https://doi.org/www.ers.usda.gov

    Google Scholar 

  • SAS Institute (1996) SAS/STAT Guide for Personal Computers, version 6.12 edition. SAS Institute Inc., Cary NC.

    Google Scholar 

  • Shaheen F. A., Khaliq A. and Aslam M. (2006) Resistance of chickpea (Cicer arietinum L.) cultivars against pulse beetle. Pakistan Journal of Botany 38, 1237–1244.

    Google Scholar 

  • Singh K. B. (1987) Chickpea breeding, pp. 127–162. In M. C. Saxena and K. B. Singh (eds), The Chickpea. C.A.B. International, Wallingford, Oxon.

    Google Scholar 

  • Somta P., Ammaranan C., Ooi P. A. C. and Srinives P. (2007) Inheritance of seed resistance of bruchids in cultivated mungbean (Vigna radiate L. Wilezek). Euphytica 155, 47–55.

    Article  Google Scholar 

  • Tarekegn A. (1994) Yield potential of rainfed wheat in the central highlands of Ethiopia. MSc thesis, Alemaya University of Agriculture, Alemaya, Ethiopia.

    Google Scholar 

  • Teklu Y. (1998) Genetic gain in grain yield potential and associated agronomic traits of tef (Eragrosis tef [Zucc.] Trotter). MSc thesis, Alemaya University, Ethiopia.

    Google Scholar 

  • Temesgen T. (2008) Genetic gain and morpho-agronomic basis of genetic improvement in grain yield potential achieved by faba bean (Vicia faba L.) breeding in Ethiopia. MSc thesis, Hawassa University, Ethiopia.

    Google Scholar 

  • Upadhyaya H. D., Furman B. J., Dwivedi S. L., Udupa S. M., Gowda S. L. L., Baum M., Crouch J. H., Buhariwalla H. K. and Singh S. (2006) Development of a composite collection for mining germplasm possessing allelic variation for beneficial traits in chickpea. Plant Genetic Resources 4, 13–19.

    Article  CAS  Google Scholar 

  • Ustun A., Allen F. L. and English B. C. (2001) Genetic progress in soybean of the U.S. Midsouth. Crop Science 41, 993–998.

    Article  Google Scholar 

  • Waddington S. R., Ransom S. R., Osamanzi M. and Sounders D. A. (1986) Improvement in the yield potential of bread wheat adapted to North West Mexico. Crop Science 26, 699–703.

    Article  Google Scholar 

  • Williams P. C. and Singh U. (1987) Nutritional quality and the evaluation of quality in breeding programs, pp. 329–356. In M. C. Saxena and K. B. Singh (eds), The Chickpea. C.A.B. International, Wallingford, Oxon.

    Google Scholar 

  • Winter P., Staginnus C., Huettel B., Jungmann R., Pfaff T., Benko-Iseppon A.-M., Rakshit S., Pinkert S., Baum M. and Kahl G. (2004) Architecture and maps of the chickpea genome: a basis for understanding plant-rhizobium interactions, pp. 201–222. In Symbiotic Nitrogen Fixation: Prospects for Enhanced Application in Tropical Agriculture. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi.

    Google Scholar 

  • Worku M. and Zelleke H. (2007) Advances in improving harvest index and grain yield of maize in Ethiopia. East African Journal of Sciences 1, 112–119.

    Article  Google Scholar 

  • Yadav S. S., Kumar J., Yadav S. K, Singh S., Yadav V. S., Turner N. C. and Redden R. (2006) Evaluation of Helicoverpa and drought resistance in Desi and Kabuli chickpea. Plant Genetic Resources 4, 198–203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemechu Keneni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keneni, G., Bekele, E., Imtiaz, M. et al. Breeding chickpea (Cicer arietinum [Fabaceae]) for better seed quality inadvertently increased susceptibility to adzuki bean beetle (Callosobruchus chinensis [Coleoptera: Bruchidae]). Int J Trop Insect Sci 31, 249–261 (2011). https://doi.org/10.1017/S1742758411000373

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758411000373

Key words

Navigation