Advertisement

Purification and characterization of chitinase from the integument of the Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae) and its antibacterial role

  • Mahmoud MehranianEmail author
  • Reza Farshbaf Pourabad
  • Nemat Sokhandan-Bashir
  • Ahmad Asoodeh
  • Ahsan Salihi
Article

Abstract

Chitinases are found in species from all kingdoms, including Kingdom Animalia. We purified chitinase, poly [1,4-(N-acetyl-β-D-glucosaminide)] glycanohydrolase, by cation exchange chromatography on SP-Sepharose from the integument of a lepidopteran, the Mediterranean flour moth, Ephestia kuehniella Zeller, and further characterized it. Ephestia kuehniella chitinase has similar properties to other insect chitinases, with respect to the molecular mass. Its molecular mass was 79.7 kDa by sodium dodecyl sulfate Polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature for activity were 6 and 40 °C, respectively. The purified enzyme exhibited stability at a pH range from 4.5 to 8.0 and showed high sensitivity to Co2+, Mn2+, Ca2+, Hg2+ and Ag+. The Km and Vmax values of E. kuehniella chitinase were, respectively, 3.98 mg/mL and 7.11 μmol/min/mg for colloidal chitin. In comparison to the values determined for the substrate affinity, the enzyme had a 2.36-fold higher affinity for Carboxymethyl-Chitin-Remazol Brilliant Violet (CM-Chitin-RBV) as a soluble substrate. We examined the antibacterial effect of E. kuehniella chitinase on the growth of both Gram-positive and Gram-negative bacteria. The enzyme inhibited the growth of Bacillus subtilis, Bacillus thuringiensis and Escherichia coli, where the average diameter of inhibition zone was 20, 23 and 19 mm, respectively. The antimicrobial effect and chitinase activity strengthen the hypothesis that the enzyme could be used in biological control against plant pests.

Key words

Ephestia kuehniella insect chitinase integument chitin SP-Sepharose antibacterial effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Banat B. M. A., Kameyama Y, Yoshioka T. and Koga D. (1999) Purification and characterization of a 54 kDa chitinase from Bombyx mori. Insect Biochemistry and Molecular Biology 29, 537–547.CrossRefGoogle Scholar
  2. Abdel-Banat B. M. A., Zhou W., Karasuda S. and Koga D. (2002) Analysis of hydrolytic activity of a 65-kDa chitinase from the silkworm, Bombyx mori. Bioscience, Biotechnology and Biochemistry 66, 1119–1122.CrossRefGoogle Scholar
  3. Arakane Y and Muthukrishnan S. (2010) Insect chitinase and chitinase-like proteins. Cellular and Molecular Life Sciences 67, 201–216.CrossRefGoogle Scholar
  4. Arakane Y, Zhu Q., Matsumiya M., Muthukrishnan S. and Kramer K. J. (2003) Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochemistry and Molecular Biology 33, 631–648.CrossRefGoogle Scholar
  5. Bhattacharya D., Nagpure A. and Gupta R. K. (2007) Bacterial chitinases: Properties and potential. Critical Reviews in Biotechnology 27, 21–28.CrossRefGoogle Scholar
  6. Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.CrossRefGoogle Scholar
  7. Cantarel B. L., Coutinho P. M., Rancurel C, Bernard T., Lombard V. and Henrissat B. (2009) The carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research 37, D233–D238.CrossRefGoogle Scholar
  8. Das S., Van Dellen K, Bulik D., Magnelli P., Cui J., Head J., Robbins P. W. and Samuelson J. (2006) The cyst wall of Entamoeba invadens contains chitosan (deacetylated chitin). Molecular and Biochemical Parasitology 148, 86–92.CrossRefGoogle Scholar
  9. Ehrlich H., Krautter M., Hanke T, Simon P., Knieb C, Heinemann S. and Worch H. (2007a) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). journal of Experimental Zoology Part B 308, 473–483.CrossRefGoogle Scholar
  10. Ehrlich H, Maldonado M., Spindler K.-d., Eckert C., Hanke T, Born R., Goebel C., Simon P., Heinemann S. and Worch H. (2007b) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). Journal of Experimental Zoology Part B 308, 347–356.CrossRefGoogle Scholar
  11. Esseling J. J. and Emons A. M. C. (2004) Dissection of Nod factor signalling in legumes: Cell biology, mutants and pharmacological approaches. Journal of Microscopy 214, 104–113.CrossRefGoogle Scholar
  12. Fukamizo T. (2000) Chitinolytic enzymes: Catalysis, substrate binding, and their application. Current Protein & Peptide Science 1, 105–124. doi: 10.2174/1389203003381450.CrossRefGoogle Scholar
  13. Genta F. A., Blanes L., Cristofoletti P. T, do Lago C. L., Terra W. R. and Ferreira C. (2006) Purification, characterization and molecular cloning of the major chitinase from Tenebrio molitor larval midgut. Insect Biochemistry and Molecular Biology 36, 789–800.CrossRefGoogle Scholar
  14. Haider S. K, Maity C, Jana A., Pati B. R. and Keshab C. M. (2012) Chitinolytic enzymes from the newly isolated Aeromonas hydrophila SBK1: Study of the mosquitocidal activity. BioControl 57, 441–449.CrossRefGoogle Scholar
  15. Hegedus D., Erlandson M., Gillott C. and Toprak U. (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annual Review of Entomology 54, 285–302.CrossRefGoogle Scholar
  16. Hunt S. and El Sherief A. (1990) Aperiodic structure in the ‘pen’ chitin of the squid Loligo vulgaris. Tissue and Cell 22, 191–197.CrossRefGoogle Scholar
  17. Jagadeeswari S. J. and Panneer Selvam K. (2012) Optimization of chitinase production by soil Streptomyces sp. SJKP9. Journal of Academia and Industrial Research 1, 332–336.Google Scholar
  18. Jeuniaux C. and Voss-Foucart M. F (1991) Chitin biomass and production in the marine environment. Biochemical Systematics and Ecology 19, 347–356.CrossRefGoogle Scholar
  19. Kabir K. E., Hirowatari D., Watanabe K. and Koga D. (2006a) Purification and characterization of a novel isozyme of chitinase from Bombyx mori. Bioscience, Biotechnology, and Biochemistry 70, 252–262. doi: 10.1271/bbb.70.252CrossRefGoogle Scholar
  20. Kabir K. E., Sugimoto H, Tado H, Endo K., Yamanaka A., Tanaka S. and Koga D. (2006b) Effect of Bombyx mori chitinase against Japanese pine sawyer (Monochamus alternatus) adults as a biopesticide. Bioscience, Biotechnology, and Biochemistry 70, 219–229. doi: 10.1271/bbb.70.219CrossRefGoogle Scholar
  21. Khan M. A., Hamid R., Ahmad M., Abdin M. Z. and Javed S. (2010) Optimization of culture media for enhanced chitinase production from a novel strain of Stenotrophomonas maltophilia using response surface methodology. Journal of Microbiology and Biotechnology 20, 1597–1602.CrossRefGoogle Scholar
  22. Koga D., Jilka J. and Kramer K. J. (1983) Insect endochitinases: Glycoproteins from moulting fluid, integument and pupal haemolymph of Manduca sexta L. Insect Biochemistry 13, 295–305.CrossRefGoogle Scholar
  23. Koga D., Sasaki Y, Uchiumi Y, Hirai N, Arakene Y and Nagamatsu Y (1997) Purification and characterization of Bombyx mori chitinases. Insect Biochemistry and Molecular Biology 27, 757–767.CrossRefGoogle Scholar
  24. Kondo K., Matsumoto M., Kojo A. and Maeda R. (2002) Purification and characterization of chitinase from pupae of Vieris rapae crucivora (Boisduval). Journal of Chemical Engineering of Japan 35, 241–246.CrossRefGoogle Scholar
  25. Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.CrossRefGoogle Scholar
  26. Lee Y. S., Park I. H., Yoo J. S., Chung S. Y., Lee Y. C, Cho Y S., Ahn S. C, Kim C. M. and Choi Y. L. (2007) Cloning, purification, and characterization of chitinase from Bacillus sp. DAU101. Bioresource Technology 98, 2734–2741.CrossRefGoogle Scholar
  27. Linder M. and Teeri T. T. (1997) The roles and function of cellulose-binding domains. Journal of Biotechnology 57, 15–28.CrossRefGoogle Scholar
  28. Mathur A., Rawat A., Bhatt G., Baweja S., Ahmad F., Grover A., Madhav K., Dhand M., Mathur D., Verma S. K., Singh S. K. and Dua V. K. (2011) Isolation of Bacillus producing chitinase from soil: Production and purification of chito-oligosaccharides from chitin extracted from fresh water crustaceans and antimicrobial activity of chitinase. Recent Research in Science and Technology 3(11), 01–06.Google Scholar
  29. Merzendorfer H. (2006) Insect chitin synthases: A review. Journal of Comparative Physiology B 176, 1–15.CrossRefGoogle Scholar
  30. Merzendorfer H. (2013) Insect-derived chitinases. Advances in Biochemical Engineering/Biotechnology 136, 19–50.CrossRefGoogle Scholar
  31. Milewski S., O’Donnell R. W. and Gooday G. W. (1992) Chemical modification studies of the active centre of Candida albicans chitinase and its inhibition by allosamidin. Journal of General Microbiology 138, 2545–2550.CrossRefGoogle Scholar
  32. Miller G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426–428.CrossRefGoogle Scholar
  33. Reynolds S. E. and Samuels R. I. (1996) Physiology and biochemistry of insect moulting fluid. Advances in Insect Physiology 26, 157–232.CrossRefGoogle Scholar
  34. Roncero C. (2002) The genetic complexity of chitin synthesis in fungi. Current Genetics 41, 367–378.CrossRefGoogle Scholar
  35. Ruiz-Herrera J. and Ortiz-Castellanos L. (2010) Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Research 10, 225–243.CrossRefGoogle Scholar
  36. Samuels R. I. and Paterson I. C. (1995) Cuticle degrading proteases from insect moulting fluid and culture filtrates of entomopathogenic fungi. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 110, 661–669.CrossRefGoogle Scholar
  37. Wang S. L., Hsiao W. J. and Chang W. T. (2002) Purification and characterization of an antimicrobial chitinase extracellularly produced by Monascus purpureus CCRC31499 in a shrimp and crab shell powder medium. Journal of Agricultural and Food Chemistry 50, 2249–2255.CrossRefGoogle Scholar
  38. Weiss I. M., Schönitzer V., Eichner N. and Sumper M. (2006) The chitin synthase involved in marine bivalve mollusk shell formation contains a myosin domain. FEBS Letters 580, 1846–1852.CrossRefGoogle Scholar
  39. Zhang H. B., Liu M. Y, Tian Y J. and Hu X. Q. (2011) Comparative characterization of chitinases from silkworm (Bombyx mori) and bollworm (Helicoverpa armígera). Cell Biochemistry and Biophysics 61, 267–275.CrossRefGoogle Scholar
  40. Zhang Y, Foster J. M., Nelson L. S., Ma D. and Carlow C. K. S. (2005) The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Developmental Biology 285, 330–339.CrossRefGoogle Scholar

Copyright information

© icipe 2018

Authors and Affiliations

  • Mahmoud Mehranian
    • 1
    Email author
  • Reza Farshbaf Pourabad
    • 1
  • Nemat Sokhandan-Bashir
    • 1
  • Ahmad Asoodeh
    • 2
  • Ahsan Salihi
    • 2
  1. 1.Department of Plant Protection, Faculty of AgricultureUniversity of TabrizTabrizIran
  2. 2.Faculty of ScienceFerdowsi University of MashhadMashhadIran

Personalised recommendations