Ecological variation and resistance levels to propoxur and chlorpyrifos in Anopheles stephensi (Diptera: Culicidae), a malaria mosquito from India

  • Thiruvaipati Penchalaiah Narasimhadass Hariprasad
  • Nadikere Jaya ShettyEmail author


A total of 39 strains of Anopheles stephensi, an important urban malaria vector, were collected from various parts of India and maintained in the insectary for this study. Based on the egg-float ridge number, 19 strains were classified into ecological variants and 32 strains were exposed to chlorpyrif os and propoxur to investigate their resistance status. Filter paper containing freshly laid eggs was taken, the ridge numbers on the floats were counted under the microscope, and strains were classified into ecological variants. Of the 19 strains, 18 were of ‘type form’, with ridge numbers ranging from 15 to 21. The Papareddipalya (PRP) strain belonged to the ‘intermediate form’, with 14 to 17 ridge numbers. Larval bioassays were carried out according to the procedure of the WHO. For chlorpyrifos, the lowest LC50 value was 0.00107 mg/l (Padmanabhanagar strain) and the highest value was 0.0403 mg/l (GOA-A strain). Furthermore, the lowest LC90 value was 0.00368 mg/l (Delhi strain) and the highest was 0.1746 mg/l (GOA-A strain). For propoxur, the lowest LC50 value was 0.00029 mg/l (Goraguntepalya strain) and the highest value was 0.0037 mg/l (JP Nagar strain). Moreover, the lowest LC90 value was 0.00094 mg/l (Goraguntepalya strain) and the highest value was 0.0115 mg/l (JP Nagar strain). The tolerance values ranged from 1.26 to 37.68 for chlorpyrifos and from 1.34 to 12.77 for propoxur. All the type forms were from urban and semi-urban locations, and the intermediate strain was from a semi-urban location. The bioassay results indicated that the strains of An. stephensi were more susceptible to propoxur than to chlorpyrifos.

Key words

Anopheles stephensi chlorpyrifos egg-float ridge number larval bioassay type form intermediate form propoxur 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott W. S. (1925) A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265–266.CrossRefGoogle Scholar
  2. Akiner M. M. (2014) Malathion and propoxur resistance in Turkish populations of the Anopheles maculipennis Meigen (Diptera: Culicidae) and relation to the insensitive acetylcholinesterase. Türkiye Parazitoloji Dergisi 38, 111–115.Google Scholar
  3. Boike A. H. Jr, Rathburn C. B. Jr, Floore T. G., Rodriguez H. M. and Coughlin J. S. (1989) Insecticide tolerance of Culex nigripalpus in Florida. Journal of the American Mosquito Control Association 5, 522–528.PubMedGoogle Scholar
  4. Brown A. W. A. and Pal R. (1971) Insecticide Resistance in Arthropods, 2nd edn. WHO Monograph Series Vol. 38. World Health Organization, Geneva. 491 pp.Google Scholar
  5. Chandrakala B. N. and Shetty N. J. (2006) Genetic studies of chlorpyrifos, an organophosphate insecticide resistance in Anopheles stephensi Liston, A malaria mosquito. Journal of Cytology and Genetics 7, 155–160.Google Scholar
  6. Chang K. S., Yoo D. H., Shin E. H., Lee W. G., Roh J. Y. and Park M. Y. (2013) Susceptibility and resistance of field populations of Anopheles sinensis (Diptera: Culicidae) collected from Paju to 13 insecticides. Osong Public Health and Research Perspectives 4, 76–80.CrossRefGoogle Scholar
  7. Dev V. and Sharma V. P. (2013) The dominant mosquito vectors of human malaria in India. In Anopheles mosquitoes - New insights into malaria vectors (edited by S. Manguin). InTech, ( pdfs-wm/43975.pdf)Google Scholar
  8. Dhingra N., Jha P., Sharma V. P., Cohen A. A., Jotkar R. M., Rodriguez P. S., Bassani D. G., Suraweera W., Laxminarayan R. and Peto R. (2010) Adult and child malaria mortality in India: a nationally representative mortality survey. Lancet 376, 1768–1774.CrossRefGoogle Scholar
  9. Finney D. J. (1971) Probit Analysis, 3rd edn. Cambridge University Press, Cambridge. 333 pp.Google Scholar
  10. Ghosh C., Rajasree B. H., Priyalakshmi B. L. and Shetty N. J. (2002) Susceptibility status of different strains of Anopheles stephensi Liston to fenitrothion, deltamethrin and Cypermethrin. Pestology 4, 47–52.Google Scholar
  11. Hanafi-Bojd A. A., Vatandoost H. and Jafari R. (2006) Susceptibility status of Anopheles dthali and An. fluviatilis to commonly used larvicides in an endemic focus of malaria, southern Iran. Journal of Vector Borne Diseases 43, 34–38.PubMedGoogle Scholar
  12. Harbach R. E. (2007) The Culicidae (Diptera): a review of taxonomy, classification and phylogeny. Zootaxa 1668, 591–638.Google Scholar
  13. Hartley D. and Kidd H. (1983) The Agrochemicals Handbook. Royal Society of Chemistry, Nottingham, England. 1100 pp.Google Scholar
  14. Hemingway J. (1981) Genetics and biochemistry of insecticide resistance in anophelines. PhD Thesis, University of London. 310 pp.Google Scholar
  15. Hudson J. E. (1983) Susceptibility of Aedes aegypti and Culex quinquefasciatus to insecticide in Paramaribo, Suriname, 1979–1981, and experimental selection for resistance. Cahiers ORSTOM/serie entomologie medicale et parasitologie 21, 275–279.Google Scholar
  16. Kasap H., Kasap M., Alptekin D., Luleyap U. and Herath P. R. (2000) Insecticide resistance in Anopheles sacharovi Favre in southern Turkey. Bulletin of the World Health Organization 78, 687–692.PubMedPubMedCentralGoogle Scholar
  17. Kashyap R. and Shetty N. J. (2011) Insecticide susceptibility studies of Aedes aegypti (Linnaeus) to synthetic pyrethroids Cypermethrin and bifenthrin. Pestology 35, 53–57.Google Scholar
  18. Manouchehri A. V. and Yaghoobi-Ershadi M. R. (1988) Propoxur susceptibility test of Anopheles stephensi in southern Islamic Republic of Iran (1976–86). Journal of the American Mosquito Control Association 4, 159–162.PubMedGoogle Scholar
  19. McEwen F. L. and Stephenson G. R. (1979) The Use and Significance of Pesticides in the Environment. John Wiley and Sons Inc., New York. 538 pp.Google Scholar
  20. Mehravaran A., Vatandoost H., Oshaghi M. A., Abai M. R., Edalat H., Javadian E., Mashayekhi M., Piazak N. and Hanafi-Bojd A. A. (2012) Ecology of Anopheles stephensi in a malarious area, southeast of Iran. Acta Medica Iranica 50, 61–65.PubMedGoogle Scholar
  21. Mukhopadhyay A. K., Karmakar P., Hati A. K. and Dey P. (1997) Recent epidemiological status of malaria in Calcutta Municipal Corporation area, West Bengal. Indian Journal of Malariology 34, 188–196.PubMedGoogle Scholar
  22. Nagpal B. N. and Sharma V. P. (1995) Indian Anophelines. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi. 416 pp.Google Scholar
  23. Nagpal B. N., Srivastava A., Kalra N. L. and Subbarao S. K. (2003) Spiracular indices in Anopheles stephensi: a taxonomic tool to identify ecological variants. Journal of Medical Entomology 40, 747–749.CrossRefGoogle Scholar
  24. National Research Council (1986) Pesticide Resistance: Strategies and Tactics for Management. Academy Press, Washington, DC. 471 pp.Google Scholar
  25. N’Guessan R., Boko P., Odjo A., Chabi J., Akogbeto M. and Rowland M. (2010) Control of pyrethroid and DDT-resistant Anopheles gambiae by application of indoor residual spraying or mosquito nets treated with a long-lasting organophosphate insecticide, chlorpyrifos-methyl. Malaria Journal 9, 44.CrossRefGoogle Scholar
  26. Olayemi I. K., Ande A. T., Chita S., Ibemesi G., Ayanwale V. A. and Odeyemi O. M. (2011) Insecticide susceptibility profile of the principal malaria vector, Anopheles gambiae s.l. (Diptera: Culicidae), in North-Central Nigeria. Journal of Vector Borne Diseases 48, 109–112.PubMedGoogle Scholar
  27. Puri I. M. (1949) Anophelines of the oriental region, pp. 483–505. In Malariology (edited by M. F. Boyd). Saunders, Philadelphia.Google Scholar
  28. Raghavendra K., Verma V., Srivastava H. C., Gunasekaran K., Sreehari U. and Dash A. P. (2010) Persistence of DDT, malathion and deltamethrin resistance in Anopheles culicifacies after their sequential withdrawal from indoor residual spraying in Surat district, India. Indian Journal of Medical Research 132, 260–264.PubMedGoogle Scholar
  29. Rao B. A., Sweet W. C. and Subba Rao A. M. (1938) Ova measurements of A. stephensi type and A. stephensi var. mysorensis. Journal of the Malaria Institute of India 1, 261–266.Google Scholar
  30. Rao T. R. (1981) The Anophelines of India. Indian Council of Medical Research, New Delhi. 518 pp.Google Scholar
  31. Rao T. R. (1984) The Anophelines of India (revised edition). Malaria Research Centre (ICMR), New Delhi. 518 pp.Google Scholar
  32. Rutledge L. C., Ward R. A. and Bickley W. E. (1970) Experimental hybridization of geographic strains of Anopheles stephensi (Diptera: Culicidae). Annals of the Entomological Society of America 63, 1024–1030.CrossRefGoogle Scholar
  33. Sanil D. and Shetty N. J. (2010) Genetic study of propoxur resistance - A carbamate insecticide in the malaria mosquito, Anopheles stephensi Liston. Malaria Research and Treatment 2010, Article ID 502824, doi:10.4061/2010/502824Google Scholar
  34. Shetty N. J., Zin T., Hariprasad T. P. N. and Minn M. Z. (2006) Insecticide susceptibility studies in thirty strains of An. stephensi Liston, a malaria vector to alphamethrin, bifenthrin (synthetic pyrethroids) and neem (a botanical insecticide). Pestology 30, 21–28.Google Scholar
  35. Shetty N. J., Vasanth S. N. and Sanil D. (2007) Insecticide susceptibility studies of fenthion and temephos in thirty strains of An. stephensi Liston, a malaria mosquito. Pestology 31, 33–39.Google Scholar
  36. Shetty N. J. (1983) Chromosomal translocations and inherited semisterility in the malaria vector, An. fluviatilis James. Indian Journal of Malariology 20, 45–47.Google Scholar
  37. Shetty N. J. (2002a) The genetic control of Anopheles stephensi — a malaria mosquito, pp. 44–79. In Trends in Malaria and Vaccine Research: The Current Indian Scenario (edited by D. Raghunath and R. Nayak). Tata McGraw Hill, New Delhi.Google Scholar
  38. Shetty N. J. (2002b) Evaluation of the insecticide susceptibility studies of mosquitoes of river Cauvery Basin, Karnataka State. Entomon 27, 375–383.Google Scholar
  39. Shetty N. J., Minn M. Z., Zin T. and Juanita S. R. (2010) Insecticides susceptibility studies of mosquito larvae from Mandya District, Karnataka State. The Journal of Communicable Diseases 42, 71–73.PubMedGoogle Scholar
  40. Shetty N. J., Madhyastha A. D., Ghosh C. and Rajashree B. H. (1999) Egg float ridge number in Anopheles stephensi: ecological variation. Journal of Parasitic Diseases 23, 45–48.Google Scholar
  41. Shetty V., Sanil D. and Shetty N. J. (2012) Insecticide susceptibility status in three medically important species of mosquitoes, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, from Bruhat Bengaluru Mahanagara Palike, Karnataka, India. Pest Management Science 69, 257–267.CrossRefGoogle Scholar
  42. Shetty N. J., Hariprasad T. P. N., Sanil D. and Zin T. (2013) Chromosomal inversions among insecticide-resistant strains of Anopheles stephensi Liston, a malaria mosquito. Parasitology Research 112, 3851–3857.CrossRefGoogle Scholar
  43. Sorokin M. N., Adamishina T. A., Stepnov A. P., Ivanova V. L. and Ermishev Iu V. (1991) The seasonal changes in the resistance and irritability to insecticides in the malarial mosquitoes in Karakalpakia. Meditsinskaia parazitologiia i parazitarnye bolezni 4, 9–12.Google Scholar
  44. Subbarao S. K., Vasantha K., Adak T., Sharma V. P. and Curtis C. E (1987) Egg-float ridge number in Anopheles stephensi: ecological variation and genetic analysis. Medical and Veterinary Entomology 1, 265–271.CrossRefGoogle Scholar
  45. Sweet W. C. and Rao B. A. (1937) Races of An. stephensi Liston, 1901. Indian Medical Gazette 72, 665–674.PubMedGoogle Scholar
  46. Tikar S. N., Mendki M. J., Sharma A. K., Sukumaran D., Vee V., Prakash S. and Parashar B. D. (2011) Resistance status of the malaria vector mosquitoes, Anopheles stephensi and Anopheles subpictus towards adulticides and larvicides in arid and semi-arid areas of India. Journal of Insect Science 11, 85.CrossRefGoogle Scholar
  47. Tiwari S., Ghosh S. K., Ojha V. P., Dash A. P. and Raghavendra K. (2010) Reduced susceptibility to selected synthetic pyrethroids in urban malaria vector Anopheles stephensi: a case study in Mangalore city, South India. Malaria Journal 9, 179. doi:10.1186/1475-2875-9-179.CrossRefGoogle Scholar
  48. Vatandosst H. and Borhani N. (2004) Susceptibility and irritability levels of main malaria vectors to synthetic pyrethroids in the endemic areas of Iran. Acta Medica Iranica 42, 240–247.Google Scholar
  49. WHO [World Health Organization] (2014) Fact sheet no. 94. Available at: Scholar
  50. WHO [World Health Organization] (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13. World Health Organization, Geneva, Switzerland.Google Scholar
  51. WHO [World Health Organization] (1981) Instruction for determining susceptibility or resistance of mosquito larvae to insecticides. WHO/VBC 81, 807. World Health Organization, Geneva, Switzerland.Google Scholar
  52. WHO [World Health Organization] (2009) Progress and prospects for the use of genetically modified mosquitoes to inhibit disease transmission. Report on planning meeting 1. World Health Organization, Geneva, Switzerland, ( Scholar
  53. Yaghoobi-Ershadi M. R., Namazi J. and Piazak N. (2001) Bionomics of Anopheles sacharovi in Ardebil province, northwestern Iran during a larval control program. Acta Tropica 78, 207–215.CrossRefGoogle Scholar
  54. Zahirnia A. H., Vatandoost H., Nateghpour M. and Djavadian E. (2002) Insecticide resistance/susceptibility monitoring in Anopheles pulcherrimus (Diptera: Culicidae) in Ghasreghand District, Sistan and Baluchistan Province, Iran. Iranian Journal of Public Health 31, 11–14.Google Scholar

Copyright information

© ICIPE 2016

Authors and Affiliations

  • Thiruvaipati Penchalaiah Narasimhadass Hariprasad
    • 1
  • Nadikere Jaya Shetty
    • 1
    Email author
  1. 1.Centre for Applied Genetics, Jnana BharathiBangalore UniversityBangaloreIndia

Personalised recommendations