Advertisement

Thermal reaction norms between populations with climatic differences of the invader silverleaf whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM 1 clade in Colombia

  • Fernando DíazEmail author
  • Cinthya L. Saldaña-Guzmán
  • María R. Manzano
  • Nelson Toro-Perea
  • Heiber Cárdenas-Henao
Article

Abstract

Insect species can respond adaptively to stress temperature conditions including both thermal limits and reaction norms. In this study, we considered two populations of the whitefly Bemisia tabaci (Gennadius), in which adaptive differentiation was detected for tolerance to upper thermal limits. These two populations are found in two regions of Colombia with climatic differences: the Caribbean region with high environmental temperatures and the Southwest region with lower temperature regimens. We assessed the thermal responses to a range of 1 h heat shocks (37, 39, 41, 43 and 44 °C) performed below the thermal limits for this species. Thermal responses were measured using three life-history traits involved in fitness: survival, fecundity and viability of the offspring after heat shocks. Survival or fecundity as a response to heat shocks did not differ among populations; however, there were significantly different responses for viability between populations. The Southwestern population showed higher viability responses to low heat shocks than the Caribbean population. This relationship suggests a potential trade-off, which appears to be associated with climatic regions. In addition, these results suggest that adaptation under thermal limits does not necessarily involve similar responses throughout the reaction norm. A potential ongoing evolutionary response is taking place through the thermal reaction norms for viability after the invasion by this pest in Colombia.

Key words

Heat stress thermal response Bemisia tabaci population reaction norms fitness components 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-Rabou S. and Simmons A. M. (2014) Survey of natural enemies of whiteflies (Hemiptera: Aleyrodidae) in Egypt with new local and world records. Entomological News 124, 38–56.CrossRefGoogle Scholar
  2. Bahrndorff S., Holmstrup M., Petersen H. and Loeschcke V. (2006) Geographic variation for climatic stress resistance traits in the springtail Orchesella cincta. Journal of Insect Physiology 52, 951–959.CrossRefGoogle Scholar
  3. Bowler K. and Terblanche J. S. (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biological Reviews 83, 339–355.CrossRefGoogle Scholar
  4. Cuéllar M. E. and Morales F. J. (2006) La mosca blanca Bemisia tabaci (Gennadius) como plaga y vectora de virus en fríjol común (Phaseolus vulgaris L.). Revista Colombiana de Entomología 32, 1–9.Google Scholar
  5. Cui X., Wan R, Xie M. and Liu T. (2008a) Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. Journal of Insect Science 8, 24. doi:10.1673/031.008.2401.CrossRefGoogle Scholar
  6. Cui X., Xie M. and Wan F. (2008b) Effects of brief exposure to high temperature on survival and fecundity of two whitefly species: Bemisia tabaci B-biotype and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Zhongguo nongye Kexue (Scientia Agricultura Sinica) 41, 424–430.Google Scholar
  7. De Barro P. J., Liu S. S., Boykin L. M. and Dinsdale A. B. (2011) Bemisia tabaci: a statement of species status. Annual Review of Entomology 56, 1–19. doi:10.1146/annurev-ento-112408-085504.CrossRefGoogle Scholar
  8. Delpuech J.-M., Moreteau B., Chiche J., Pla E., Vouidibio J. and David J. R. (1995) Phenotypic plasticity and reaction norms in temperate and tropical populations of Drosophila melanogaster: ovarian size and developmental temperature. Evolution 49, 670–675.PubMedGoogle Scholar
  9. Díaz R (2013) Genetic structure and adaptive divergence of thermal responses in populations of the whitefly Bemisia tabaci. PhD thesis, Universidad del Valle, Colombia.Google Scholar
  10. Díaz R, Endersby N. M. and Hoffmann A. A. (2014a) Genetic structure of the whitefly Bemisia tabaci populations in Colombia following a recent invasion. Insect Science. doi:10.1111/1744-7917.12129.Google Scholar
  11. Díaz R, Muñoz-Valencia V., Juvinao-Quintero D. L., Manzano-Martínez M. R., Toro-Perea N., Cárdenas-Henao H. and Hoffmann A. A. (2014b) Evidence for adaptive divergence of thermal responses among Bemisia tabaci populations from tropical Colombia following a recent invasion. Journal of Evolutionary Biology 27, 1160–1171.CrossRefGoogle Scholar
  12. Dillon M. E., Wang G., Garrity P. A. and Huey R. B. (2009) Thermal preference in Drosophila. Journal of Thermal Biology 34, 109–119.CrossRefGoogle Scholar
  13. Elbaz M., Weiser M. and Morin S. (2011) Asymmetry in thermal tolerance trade-offs between the B and Q sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Evolutionary Biology 24, 1099–1109.CrossRefGoogle Scholar
  14. Gupta A. P. and Lewontin R. C. (1982) A study of reaction norms in natural populations of Drosophila pseudoobscura. Evolution 36, 934–948.CrossRefGoogle Scholar
  15. Hill M. P., Chown S. L. and Hoffmann A. A. (2013) A predicted niche shift corresponds with increased thermal resistance in an invasive mite, Halotydeus destructor. Global Ecology and Biogeography 22, 942–951.CrossRefGoogle Scholar
  16. Hoffmann A. A. (1995) Acclimation: increasing survival at a cost. Trends in Ecology and Evolution 10, 1–2.CrossRefGoogle Scholar
  17. Hoffmann A. A. (2010) Physiological climatic limits in Drosophila: patterns and implications. The Journal of Experimental Biology 213, 870–880. doi:10.1242/jeb.037630.CrossRefGoogle Scholar
  18. Hoffmann A. A., Sørensen J. G. and Loeschcke V. (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology 28, 175–216.CrossRefGoogle Scholar
  19. Huey R. B. and Kingsolver J. G. (1993) Evolution of resistance to high temperature in ectotherms. The American Naturalist 142, S21–S46. doi:10.1086/285521.CrossRefGoogle Scholar
  20. Hutchings J. A., Swain D. P., Rowe S., Eddington J. D., Puvanendran V. and Brown J. A. (2007) Genetic variation in life-history reaction norms in a marine fish. Proceedings of the Royal Society/Biological Sciences 274, 1693–1699. doi:10.1098/rspb.2007.0263.CrossRefGoogle Scholar
  21. Johnson T. K., Cockerell F. E., Carrington L. B., Rako L., Hoffmann A. A. and McKechnie S. W. (2009) The capacity of Drosophila to heat harden associates with low rates of heat-shocked protein synthesis. Journal of Thermal Biology 34, 327–331.CrossRefGoogle Scholar
  22. Karl I., Sørenson J. G., Loeschcke V. and Fischer K. (2009) HSP70 expression in the Copper butterfly Lycaena tityrus across altitudes and temperatures. Journal of Evolutionary Biology 22, 172–178.CrossRefGoogle Scholar
  23. Krebs R. A. and Feder M. E. (1997) Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress and Chaperones 2, 60–71.CrossRefGoogle Scholar
  24. Krebs R. A. and Loeschcke V. (1994a) Costs and benefits of activation of the heat-shock response in Drosophila melanogaster. Functional Ecology 8, 730–737.CrossRefGoogle Scholar
  25. Krebs R. A. and Loeschcke V. (1994b) Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster. Journal of Evolutionary Biology 7, 39–49. doi:10.1046/j.l420-9101.1994.7010039.x.CrossRefGoogle Scholar
  26. Lande R. (1991) Isolation by distance in a quantitative trait. Genetics 128, 443–452.PubMedPubMedCentralGoogle Scholar
  27. Lounibos L. P., Escher R. L. and Lourenço-De-Oliveira R. (2003) Asymmetric evolution of photoperiodic diapause in temperate and tropical invasive populations of Aedes albopictus (Diptera: Culicidae). Annals of the Entomological Society of America 96, 512–518.CrossRefGoogle Scholar
  28. Magiafoglou A. and Hoffmann A. (2003) Thermal adaptation in Drosophila serrata under conditions linked to its southern border: unexpected patterns from laboratory selection suggest limited evolutionary potential. Journal of Genetics 82, 179–189.CrossRefGoogle Scholar
  29. Muñoz-Valencia V., Díaz-González F., Del Rosario Manzano-Martínez M., Toro-Perea N. and Cárdenas-Henao H. (2013) Basal and induced thermo-tolerance to heat shocks in Bemisia tabaci biotype B (Hemiptera: Aleyrodidae). Revista Colombiana de Entomología 39, 18–25.Google Scholar
  30. Neargarder G., Dahlhoff E. P. and Rank N. E. (2003) Variation in thermal tolerance is linked to phospho-glucose isomerase genotype in a montane leaf beetle. Functional Ecology 17, 213–221.CrossRefGoogle Scholar
  31. Neven L. G. (2000) Physiological responses of insects to heat. Postharvest Biology and Technology 21, 103–111.CrossRefGoogle Scholar
  32. Oliveira M. R. V., Henneberry T. J. and Anderson P. (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection 20, 709–723.CrossRefGoogle Scholar
  33. Overgaard J. and Sørensen J. G. (2008) Rapid thermal adaptation during field temperature variations in Drosophila melanogaster. Cryobiology 56, 159–162.CrossRefGoogle Scholar
  34. Parsell D. A. and Lindquist S. (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annual Review of Genetics 27, 437–496.CrossRefGoogle Scholar
  35. Perring T. M. (2001) The Bemisia tabaci species complex. Crop Protection 20, 725–737.CrossRefGoogle Scholar
  36. Quintero C., Cardona C., Ramírez D. and Jiménez N. (1998) Primer registro del biotipo B de Bemisia tabaci (Homoptera: Aleyrodidae) en Colombia. Revista Colombiana de Entomologia 24, 23–28.Google Scholar
  37. Quintero C., Rendón F., García J., Cardona C., López Avila A. and Hernández M. P. (2001) Especies y biotipos de moscas blancas (Homoptera: Aleyrodidae) en cultivos semestrales de Colombia y Ecuador. Revista Colombiana de Entomologia 27, 27–31.Google Scholar
  38. Randall D., Burggren W. and French K. (1998) Eckert Fisiologia Animal: Mecanismos y adaptaciones, 4th edn, pp. 736–765. McGraw-Hill Interamericana, Madrid.Google Scholar
  39. Rashkovetsky E., Iliadi K., Michalak P., Lupu A., Nevo E., Feder M. E. and Korol A. (2006) Adaptive differentiation of thermotolerance in Drosophila along a microclimatic gradient. Heredity (Edinburgh) 96, 353–359.CrossRefGoogle Scholar
  40. Rodriguez I. V. and Cardona C. (2001) Problemâtica de Trialeurodes vaporariorum y Bemisia tabaci (Homoptera: Aleyrodidae) como plagas de cultivos semestrales en el Valle del Cauca. Revista Colombiana de Entomología 27, 21–26.Google Scholar
  41. Rodríguez I. V., Morales H., Bueno J. M. and Cardona C. (2005) El biotipo B de Bemisia tabaci (Homoptera: Aleyrodidae) adquiere mayor importancia en el Valle del Cauca. Revista Colombiana de Entomología 31, 21–28.Google Scholar
  42. Salvucci M. E. (2000) Sorbitol accumulation in whiteflies: evidence for a role in protecting proteins during heat stress. Journal of Thermal Biology 25, 353–361.CrossRefGoogle Scholar
  43. Salvucci M. E., Hendrix D. L. and Wolfe G. R. (1999) Effect of high temperature on the metabolic processes affecting sorbitol synthesis in the silverleaf whitefly Bemisia argentifolii. Journal of Insect Physiology 45, 21–27.CrossRefGoogle Scholar
  44. Salvucci M. E., Stecher D. S. and Henneberry T. J. (2000) Heat shock proteins in whiteflies, an insect that accumulates sorbitol in response to heat stress. Journal of Thermal Biology 25, 363–371.CrossRefGoogle Scholar
  45. Schlichting C. D. and Pigliucci M. (1998) Phenotypic Evolution: A Reaction Norm Perspective. Sinauer Associates, Sunderland, MA. 387 pp.Google Scholar
  46. Scott M., Berrigan D. and Hoffmann A. A. (1997) Costs and benefits of acclimation to elevated temperature in Trichogramma carverae. Entomologia Experimentalis et Applicata 85, 211–219.CrossRefGoogle Scholar
  47. Shatters R. G., Powell C. A., Boykin L. M., Liansheng H. and McKenzie C. L. (2009) Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: development of universal and Bemisia tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers. Journal of Economic Entomology 102, 750–758.CrossRefGoogle Scholar
  48. StatSoft (2007) STATISTICA (Data Analysis Software System), Version 8.0. Available at: http://wwwstatsoft.comGoogle Scholar
  49. Storz J. E (2002) Contrasting patterns of divergence in quantitative traits and neutral DNA markers: analysis of clinal variation. Molecular Ecology 11, 2537–2551. doi:10.1046/j.l365-294X.2002.01636.x.CrossRefGoogle Scholar
  50. Wan R.-H., Xie M. and Cui X.-H. (2008) Effects of heat shock on survival and fecundity of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci B-biotype. Journal of Insect Science 8, 49. Available at: http://www.insectscience.Org/8.04.Google Scholar
  51. Wan R.H., Zhang G., Liu S., Luo C., Chu D., Zhang Y, Zang L., Jiu M., Lü Z., Cui X., Zhang L., Zhang R, Zhang Q., Liu W., Liang P., Lei Z. and Zhang Y. (2009) Invasive mechanism and management strategy of Bemisia tabaci (Gennadius) biotype B: progress report of 973 Program on invasive alien species in China. Science in China (Series C: Life Sciences) 52, 88–95.Google Scholar
  52. Wolfe G. R., Hendrix D. L. and Salvucci M. E. (1998) A thermoprotective role for sorbitol in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology 44, 597–603.CrossRefGoogle Scholar
  53. Yu H. and Wan R.-H. (2009) Cloning and expression of heat shock protein genes in two whitefly species in response to thermal stress. Journal of Applied Entomology 133, 602–614.CrossRefGoogle Scholar

Copyright information

© ICIPE 2015

Authors and Affiliations

  • Fernando Díaz
    • 1
    Email author
  • Cinthya L. Saldaña-Guzmán
    • 1
  • María R. Manzano
    • 2
  • Nelson Toro-Perea
    • 1
  • Heiber Cárdenas-Henao
    • 1
  1. 1.Department of BiologyUniversidad del ValleCaliColombia
  2. 2.Universidad Nacional de ColombiaColombia

Personalised recommendations