International Journal of Tropical Insect Science

, Volume 34, Issue 4, pp 248–259 | Cite as

Field evaluation of the synergistic effects of neem oil with Beauveria bassiana (Hypocreales: Clavicipitaceae) and Bacillus thuringiensis var. kurstaki (Bacillales: Bacillaceae)

  • Codjo Euloge TogbéEmail author
  • Elisabeth Zannou
  • Gualbert Gbèhounou
  • Dansou Kossou
  • Arnold van Huis


In the present study, the synergistic effects of Beauveria bassiana (Bals.-Criv. Vuill.) (isolate Bb11) and Bacillus thuringiensis var. kurstaki (Berliner) with neem oil were evaluated in three agroecological zones in Bénin. Four bioinsecticide treatments (neem oil, neem oil and B. bassiana used separately for different target pests, neem oil mixed with B. bassiana and neem oil mixed with B. thuringiensis) were compared with a calendar-based treatment using synthetic insecticides and a control without insecticides. The bioinsecticide treatments were less effective than the calendar-based treatment at controlling cotton pests. There was no difference in yields and the number of damaged bolls in plots under treatments with the four bioinsecticide formulations, suggesting an absence of synergy between neem oil and B. bassiana and neem oil and B. thuringiensis. The numbers of natural enemies in all the bioinsecticide treatment plots and the control plots were similar and higher than those in the calendar-based treatment plots. The highest yield and profitability were obtained with the calendar-based treatment. Screening the compatibility of plant-based products and biopesticides through bioassays is essential for a successful application of their combinations in any integrated pest management strategy.

Key words

biopesticides synthetic pesticides natural enemies thresholds integrated pest management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed S., Saleem M. A. and Rauf I. (2002) Field efficacy of some bioinsecticides against maize and Jowar stem borer, Chilo partellus (Pyralidae: Lepidoptera). International Journal of Agriculture and Biology 4, 332–334.Google Scholar
  2. Casida J. E. and Quistad G. B. (1998) Golden age of insecticide research: past, present, or future? Annual Review of Entomology 43, 1–16.CrossRefGoogle Scholar
  3. CRA-CF (2002) Rapport de Campagne 2001–2002. Centre de Recherche Agricole Coton et Fibre, MAEP, Réblique du Bénin. 188 pp.Google Scholar
  4. Croft B. A. and Brown A. W. A. (1975) Responses of arthropod natural enemies to insecticides. Annual Review of Entomology 20, 285–335.CrossRefGoogle Scholar
  5. de Faria M. R. and Wraight S. P. (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 43, 237–256.CrossRefGoogle Scholar
  6. Depieri R. A., Martinez S. S. and Menezes A. O. Jr (2005) Compatibility of the fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycetes) with extracts of neem seeds and leaves and the emulsible oil. Neotropical Entomology 34, 601–606.CrossRefGoogle Scholar
  7. Douro Kpindou O. K., Djegui D. A., Glitho I. A. and Tamò M. (2011) Dose transfer of an oil-based formulation of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) sprays to cotton bollworm in an arena trial. International Journal of Tropical Insect Science 31, 262–268.CrossRefGoogle Scholar
  8. Elzen G. W. and James R. R. (2002) Responses of Plutella xylostella and Coleomegilla maculata to selected insecticides in a residual insecticide bioassay. Southwestern Entomologist 27, 149–154.Google Scholar
  9. Gahukar R. T. (2010) Role and perspective of phytochemicals in pest management in India. Current Science (Bangalore) 98, 897–899.Google Scholar
  10. Glin L. C., Kuiseau J., Thiam A., Vodouhé D. S., Dinham B. and Ferrigno S. (2006) Living with Poison — Problems of Endosulfan in West African Cotton Growing Systems. PAN UK, London.Google Scholar
  11. Gouli V. V., Gouli S. Y., Skinner M. and Shternshis M. V. (2009) Effect of the entomopathogenic fungi on mortality and injury level of western flower thrips, Frankliniella occidentalis. Archives of Phytopathology and Plant Protection 42, 118–123.CrossRefGoogle Scholar
  12. Haroon W. M., Pages C., Vassal J.-M., Abdalla A. M., Luong-Skovmand M.-H. and Lecoq M. (2011) Laboratory and field investigation of a mixture of Metarhizium acridum and neem seed oil against the tree locust Anacridium melanorhodon melanorhodon (Orthoptera: Acrididae). Biocontrol Science and Technology 21, 353–366.CrossRefGoogle Scholar
  13. Inglis G. D., Goettel M. S., Butt T. M. and Strasser H. (2001) Use of hyphomycetous fungi for managing insect pests, pp. 23–69. In Fungi as Biocontrol Agents: Progress, Problems and Potential (edited by T. M. Butt, C. Jackson and N. Magan). Cabi Publishing, Wallingford, UK.CrossRefGoogle Scholar
  14. Islam Md. T., Castle S. J. and Ren S. (2010) Compatibility of the insect pathogenic fungus Beauveria bassiana with neem against sweetpotato whitefly, Bemisia tabaci, on eggplant. Entomologia Experimentalis et Applicata 134, 28–34.CrossRefGoogle Scholar
  15. Isman M. B. (2000) Biopesticides based on phytochemicals, pp. 1–12. In Phytochemical Biopesticides (edited by O. Koul and D. S. Dhaliwal). CRC Press, Boca Raton, Florida.Google Scholar
  16. Jena M. (2005) Integrated pest management with botanical pesticides in rice with emphasis on neem products. Oryza 42, 124–128.Google Scholar
  17. Joseph R. A., Premila K., Nisha V. G., Rajendran S. and Mohan S. S. (2010) Safety of neem products to tetragnathid spiders in rice ecosystem. Journal of Biopesticides 3, 88–89.Google Scholar
  18. Koul O., Isman M. B. and Ketkar C. (1990) Properties and uses of neem, Azadirachta indica. Canadian Journal of Botany 68, 1–11.CrossRefGoogle Scholar
  19. Leskovar D. I. and Boales A. K. (1996) Azadirachtin: potential use for controlling lepidopterous insects and increasing marketability of cabbage. HortScience 31, 405–409.CrossRefGoogle Scholar
  20. Mancini F., Termorshuizen A. J., Jiggins J. L. S. and van Bruggen A. H. C. (2008) Increasing the environmental and social sustainability of cotton farming through farmer education in Andhra Pradesh, India. Agricultural Systems 96, 16–25.CrossRefGoogle Scholar
  21. Matthews G. (1996) The importance of scouting in cotton IPM. Crop Protection 15, 369–374.CrossRefGoogle Scholar
  22. Mohan M. C., Reddy N. P., Devi U. K., Kongara R. and Sharma H. C. (2007) Growth and insect assays of Beauveria bassiana with neem to test their compatibility and synergism. Biocontrol Science and Technology 17, 1059–1069.CrossRefGoogle Scholar
  23. Niassy S., Maniania N. K., Subramanian S., Gitonga M. L., Maranga R., Obonyo A. B. and Ekesi S. (2012) Compatibility of Metarhizium anisopliae isolate ICIPE 69 with agrochemicals used in French bean production. International Journal of Pest Management 58, 131–137.CrossRefGoogle Scholar
  24. Patel M. C. and Vyas R. N. (2000) Field bioefficacy of Bacillus thuringiensis var kurstaki and neem based formulations against cotton bollworms. Indian Journal of Plant Protection 28, 78–83.Google Scholar
  25. Peltzer R. and Röttger D. (2013) Cotton Sector Organisation Models and their Impact on Farmer’s Productivity and Income. Discussion Paper 4/2013, Deutsches Institut füwicklungspolitik (DIE), Bonn. ISBN: 978-3-88985-627-2.Google Scholar
  26. Pimentel D. and Edwards C. A. (1982) Pesticides and ecosystems. BioScience 32, 595–600.CrossRefGoogle Scholar
  27. Ravensberg W. J. (2011) Progress in Biological Control: Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods. Springer Science, Dordrecht, The Netherlands. 386 pp.Google Scholar
  28. Sakthivel N., Balakrishna R., Ravikumar J., Samuthiravelu P., Isaiarasu L. and Qadri S. M. H. (2012) Efficacy of botanicals against jassid Empoasca flavescens F. (Homoptera: Cicadellidae) on mulberry and their biosafety to natural enemies. Journal of Biopesticides 5, 246–249.Google Scholar
  29. Sakthivel N. and Qadri S. M. H. (2010) Impact of insecticides and botanicals on population build-up of predatory coccinellids in mulberry. Journal of Biopesticides 3, 85–87.Google Scholar
  30. Salako E. A., Anjorin S. T., Garba C. D. and Omolohunnu E. B. (2008) A review of neem biopesticide utilization and challenges in Central Northern Nigeria. African Journal of Biotechnology 7, 4758–4764.Google Scholar
  31. SAS Institute (2005) SAS/STAT 9.1 Production GLIMMIX Procedure for Windows. SAS Institute Inc., Cary, NC, USA.Google Scholar
  32. Schmutterer H. (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology 35, 271–297.CrossRefGoogle Scholar
  33. Schmutterer H. and Singh R. P. (2002) List of insect pests susceptible to neem products, pp. 411–456. In The Neem Tree Azadirachta indica A. Juss. and Other Meliaceous Plants (edited by H. Schmutterer), 2nd ed. Neem Foundation, Mumbai, India.Google Scholar
  34. Shah F. A., Gaffney M., Ansari M., Prasad M. and Butt T. (2008) Neem seed cake enhances the efficacy of the insect pathogenic fungus, Metarhizium anisopliae, for the control of black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Biological Control 44, 111–115.CrossRefGoogle Scholar
  35. Sinzogan A. A. C., Kossou D. K., Atachi P. and van Huis A. (2006) Participatory evaluation of synthetic and botanical pesticide mixtures for cotton bollworm control. International Journal of Tropical Insect Science 26, 246–255.CrossRefGoogle Scholar
  36. Tavares W. S., Costa M. A., Cruz I., Silveira R. D., Serrão J. E. and Zanuncio J. C. (2010) Selective effects of natural and synthetic insecticides on mortality of Spodoptera frugiperda (Lepidoptera: Noctuidae) and its predator Eriopis connexa (Coleoptera: Coccinellidae). Journal of Environmental Science and Health B 45, 557–561.CrossRefGoogle Scholar
  37. Togbé C. E. (2013) Cotton in Bénin: governance and pest management. PhD thesis, Wageningen University, The Netherlands..Google Scholar
  38. Ton P., Tovignan S. and Vodouhe S. D. (2000) Endosulfan deaths and poisonings in Bénin. Pesticides News 47, 12–14.Google Scholar
  39. Tovignan S., Vodouhe S. and Dinham B. (2001) Cotton pesticides cause more deaths in Bénin. Pesticides News 52, 12–14.Google Scholar
  40. Verghese A., Nagaraju D. K., Vasudev V., Kamala Jayanthi P. D., Madhura H. S. and Stonehouse J. M. (2005) Effectiveness of insecticides of synthetic, plant and animal origin against the mango stone weevil, Sternochetus mangiferae (Fabricius) (Coleoptera: Curculionidae). Crop Protection 24, 633–636.CrossRefGoogle Scholar
  41. Vimala-Devi P. S. and Prasad Y. G. (1996) Compatibility of oils and antifeedants of plant origin with the entomopathogenic fungus Nomuraea rileyi. Journal of Invertebrate Pathology 68, 91–93.CrossRefGoogle Scholar
  42. Wilson L. J. (1993) Spider mites (Acari: Tetranychidae) affect yield and fiber quality of cotton. Journal of Economic Entomology 86, 566–585.CrossRefGoogle Scholar

Copyright information

© ICIPE 2014

Authors and Affiliations

  • Codjo Euloge Togbé
    • 1
    Email author
  • Elisabeth Zannou
    • 1
  • Gualbert Gbèhounou
    • 2
  • Dansou Kossou
    • 1
  • Arnold van Huis
    • 3
  1. 1.Faculté des Sciences Agronomiques (FSA)Université d’Abomey-Calavi (UAC)CotonouBénin
  2. 2.Centre de Recherche Agricole Coton et Fibre (CRA-CF)Institut National des Recherches Agricoles du Bénin (INRAB)CotonouBénin
  3. 3.Laboratory of EntomologyWageningen University (Wageningen UR)WageningenThe Netherlands

Personalised recommendations