Advertisement

International Journal of Tropical Insect Science

, Volume 34, Issue 3, pp 157–171 | Cite as

Patterns of morphology in carabid beetles (Coleoptera: Carabidae) along a Neotropical altitudinal gradient

  • Sarah A. MaveetyEmail author
  • Robert A. Browne
Review Article

Abstract

In the present study, body length and dispersal ability were examined in carabid beetles (Coleoptera: Carabidae) sampled in the Peruvian Andes along two altitudinal gradients: old-growth forest and anthropogenically disturbed region. Dispersal ability was estimated by the flight-wing condition (i.e. macropterous or brachypterous) and the cuticular length of the flight muscle (medial length of the metasternum). The relationship between body length and altitude for combined gradients varied by tribe; all possible relationships were found: positive; negative; no relationship. At the family level, a negative relationship between altitude and insect body length was found; this was predicted because of a decrease in the diversity of resources, habitat area and primary productivity, and the increase in the unfavourable environment observed at high altitudes. Flight muscle length was also highly variable among tribes; however, for combined gradients, a negative correlation with altitude was found at the family level. Some tribes were either completely macropterous or brachypterous, but at the family level, the percentage of brachyptery increased with altitude. We suggest two hypotheses that may explain the increased incidence of flightlessness observed with increasing altitude: constraints of energy use and reduced need for dispersal potential. At the family level, carabid beetles tended to have a greater body length and decreased brachyptery in disturbed regions compared with old-growth forests. Increased dispersal ability was expected because of the need to find a suitable habitat in disturbed areas. Observed relationships may depend upon which tribes are examined and whether the forest on an altitudinal gradient has been disturbed.

Key words

body size brachyptery Carabidae cloud forest dispersal ability elevation ground beetles Puna wing state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altshuler D. L., Dudley R. and McGuire J. A. (2004) Resolution of a paradox: hummingbird flight at high elevation does not come without a cost. Proceedings of the National Academy of Sciences 101, 17731–17736.CrossRefGoogle Scholar
  2. Andersen J. (1988) Resource partitioning and interspecific interactions among riparian Bembidion species (Coleoptera: Carabidae). Entomologia Generalis 13, 47–60.CrossRefGoogle Scholar
  3. Blake S., Foster G. N., Eyre M. D. and Luff M. I. (1994) Effects of habitat type and grassland management practices on the body size distribution of carabid beetles. Pedobiologia 38, 502–512.Google Scholar
  4. Brehm G. and Fiedler K. (2004) Bergmann’s rule does not apply to geometrid moths along an elevational gradient in an Andean montane rain forest. Global Ecology and Biogeography 13, 7–14.CrossRefGoogle Scholar
  5. Brehm G., Süssenbac D. and Fiedler K. (2003) Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 26, 456–466.CrossRefGoogle Scholar
  6. Chown S. L. and Klok C. J. (2003) Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography 26, 445–455.CrossRefGoogle Scholar
  7. Cieglar J. C. (2000) Ground Beetles and Wrinkled Bark Beetles of South Carolina. Clemson University Press, Clemson. 149 pp.Google Scholar
  8. Darlington P. J. (1936) Variation and atrophy of flying wings of some carabid beetles. Annals of the Entomological Society of America 29, 136–179.CrossRefGoogle Scholar
  9. Darlington P. J. (1943) Carabidae of mountains and islands: data on the evolution of isolated faunas, and on atrophy of wings. Ecological Monographs 13, 37–61.CrossRefGoogle Scholar
  10. Darlington P. J. (1970) Carabidae on tropical islands, especially the West Indies. Biotropica 2, 7–15.CrossRefGoogle Scholar
  11. Darwin C. R. (1859) Origin of Species. J. Murray, London. 502 pp.Google Scholar
  12. den Boer P. J., Van Huizen T. H. P., den Boer-Daanje W., Aukema B. and den Bieman C. F. M. (1980) Wing polymorphism and dimorphism in ground beetles as stages in an evolutionary process (Coleoptera: Carabidae). Entomologia Generalis 6, 107–134.Google Scholar
  13. Denno R. F., Roderick G. K., Olmstead K. L. and Döbel H. G. (1991) Density-related migration in planthoppers (Homoptera: Delphacidae): the role of habitat persistence. The American Naturalist 138, 1513–1541.CrossRefGoogle Scholar
  14. Dillon M. E., Frazier M. R. and Dudley R. (2006) Into thin air: physiology and evolution of alpine insects. Integrative Computational Biology 46, 49–61.CrossRefGoogle Scholar
  15. Erwin T. L. (1979) Thoughts on the evolutionary history of ground beetles: hypotheses generated from comparative faunal analysis of lowland forest sites in temperate and tropical regions, pp. 539–592. In Carabid Beetles: Their Evolution, Natural History, and Classification (edited by T. L. Erwin, G. E. Ball, D. R. Whitehead and A. L. Halpern). Dr. W. Junk, The Hague.CrossRefGoogle Scholar
  16. Erwin T. L. (1985) The taxon pulse: a general pattern of lineage radiation and extinction among carabid beetles, pp. 437–472. In Taxonomy, Phylogeny, and Zoogeography of Beetles and Ants (edited by G. E. Ball). Dr. W. Junk Publishers, Dordrecht.Google Scholar
  17. Erwin T. L. (1991) Natural history of the carabid beetles at the BIOLAT Rio Manu Biological Station, Pakitza, Pern. Revista Peruana de Entomologia 33, 1–85.Google Scholar
  18. Erwin T. L. (1996) Biodiversity at its utmost: tropical forest beetles, pp. 27–40. In Biodiversity II: Understanding and Protecting Our Biological Resources. Joseph Henry Press, Washington, DC.Google Scholar
  19. Erwin T. L. and Kavanaugh D. H. (1981) Systematics and zoogeography of Bembidion Latreille: I. The carlhi and erasum groups of western North America (Coleoptera: Carabidae: Bembidiini). Entomologica Scandinavica Supplement 15, 33–72.Google Scholar
  20. Erwin T. L., Kavanaugh D. H. and Moore W. (2003) Key to tribes and genera of Costa Rican Carabidae. Prepared for National Biodiversity Institute (INBio), San José, Costa Rica. 26 pp.Google Scholar
  21. Forsythe T. G. (1987) The relationship between body form and habit in some Carabidae (Coleoptera). Journal of Zoology 211, 643–666.CrossRefGoogle Scholar
  22. Guevara J. and Avilés L. (2013) Community-wide body size differences between nocturnal and diurnal insects. Ecology 94, 537–543.CrossRefGoogle Scholar
  23. Gutiérrez D. and Menéndez R. (1997) Patterns in the distribution, abundance and body size of carabid beetles (Coleoptera: Caraboidea) in relation to dispersal ability. Journal of Biogeography 24, 903–914.CrossRefGoogle Scholar
  24. Hammond P. M. (1979) Wing-folding mechanisms in beetles with special reference to investigations of adephagan phylogeny (Coleoptera), pp. 539–592. In Carabid Beetles: Their Evolution, Natural History, and Classification (edited by T. L. Erwin, G. E. Ball and D. R. Whitehead). Dr. W. Junk, The Hague.Google Scholar
  25. Harrison J. F. and Roberts S. P. (2000) Flight respiration and energetics. Annual Review of Physiology 62, 179–205.CrossRefGoogle Scholar
  26. Harrison R. G. (1980) Dispersal polymorphisms in insects. Annual Review of Ecology and Systematics 11, 95–118.CrossRefGoogle Scholar
  27. Hawkins B. A. and DeVries P. J. (1996) Altitudinal gradients in the body sizes of Costa Rican butterflies. Acta Oecologica 17, 185–194.Google Scholar
  28. Herzog S. K., Hamel-Leigue A. C., Larsen T. H., Mann D. J., Soria-Auza R. W., Gill B. D., Edmonds W. D. and Spector S. (2013) Elevational distribution and conservation biogeography of Phanaeine dung beetles (Coleoptera: Scarabaeinae) in Bolivia. PLOS ONE 8, e64963.CrossRefGoogle Scholar
  29. Hodkinson I. D. (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews 80, 489–513.CrossRefGoogle Scholar
  30. Ikeda H., Nishikawa M. and Sota T. (2012) Loss of flight promotes beetle diversification. Nature Communications 3, 648.CrossRefGoogle Scholar
  31. Janzen D. H., Ataroff M., Farinñs M., Reyes S., Rinco N., Soler A., Soriano P. and Vera M. (1976) Changes in the arthropod community along an elevational transect in the Venezuelan Andes. Biotropica 8, 193–203.CrossRefGoogle Scholar
  32. Kavanaugh D. H. (1985) On wing atrophy in carabid beetles (Coleoptera: Carabidae), with special reference to Nearctic Nebria, pp. 437–472. In Taxonomy, Phylogeny, and Zoogeography of Beetles and Ants (edited by G. E. Ball). Dr. W. Junk Publishers, Dordrecht.Google Scholar
  33. Kubota U., Loyola R. D., Almeida A. M., Carvalho D. A. and Lewinsohn T. M. (2007) Body size and host range co-determine the altitudinal distribution of Neotropical tephritid flies. Global Ecology and Biogeography 16, 632–639.CrossRefGoogle Scholar
  34. Lövei G. L. and Sunderland D. K. (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology 41, 231–256.CrossRefGoogle Scholar
  35. Mani M. S. (1968) Ecology and Biogeography ofHigh Altitude Insects. Dr. W. Junk Publishers, The Hague. 527 pp.CrossRefGoogle Scholar
  36. Maveety S. A., Browne R. A. and Erwin T. L. (2011) Carabidae diversity along an altitudinal gradient in a Peruvian cloud forest (Coleoptera). Zookeys 147, 651–666.CrossRefGoogle Scholar
  37. Maveety S. A., Browne R. A. and Erwin T. L. (2013) Carabid beetle diversity related to altitude and seasonality in the Peruvian Andes. Studies on Neotropical Fauna and Environment 48, 165–174.CrossRefGoogle Scholar
  38. McCoy E. D. (1990) The distribution of insects along elevational gradients. Oikos 58, 313–322.CrossRefGoogle Scholar
  39. Moran M. D. (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100, 403–405.CrossRefGoogle Scholar
  40. Moret P. (2005) Los Coleópteros Carabidae del Páramo en los Andes del Ecuador: Sistemática, Ecología y Biogeografía. Museo de Zoología, Centro de Biodiversidad y Ambiente, Pontificia Universidad Católica del Ecuador, Quito. 306 pp.Google Scholar
  41. Moret P. (2009) Altitudinal distribution, diversity and endemicity of Carabidae (Coleoptera) in the páramos of Ecuadorian Andes. Annales de la Société Entomologique de France 45, 500–510.CrossRefGoogle Scholar
  42. Mousseau T. A. (1997) Ectotherms follow the converse to Bergmann’s rule. Evolution 51, 630–632.CrossRefGoogle Scholar
  43. Niemelä J. and Spence J. (1991) Distribution and abundance of an exotic ground-beetle (Carabidae): a test of community impact. Oikos 62, 351–359.CrossRefGoogle Scholar
  44. Niemelä J., Kotze J., Ashworth A., Brandmayr P., Desender K., New T., Penev L., Samways M. and Spence J. (2000) The search for common anthropogenic impacts on biodiversity: a global network. Journal of Insect Conservation 4, 3–9.CrossRefGoogle Scholar
  45. Noonan G. R. (1985) The influences of dispersal, vicariance, and refugia on patterns of biogeographical distributions of the beetle family Carabidae, pp. 322–349. In Taxonomy, Phylogeny, and Zoogeography of Beetles and Ants (edited by G. E. Ball). Dr. W. Junk Publishers, Dordrecht.Google Scholar
  46. Oliver I. and Beattie A. J. (1996) Invertebrate morphospecies as surrogates for species: a case study. Conservation Biology 10, 99–109.CrossRefGoogle Scholar
  47. Rainio J. and Niemelä J. (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity and Conservation 12, 487–506.CrossRefGoogle Scholar
  48. Rapp J. M. and Silman M. R. (2012) Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Climate Research 55, 17–32.CrossRefGoogle Scholar
  49. Reichardt H. (1977) A synopsis of the genera of Neotropical Carabidae (Insecta: Coleoptera). Quaestiones Entomologicae 13, 346–493.Google Scholar
  50. Ribera I., Dolédec S., Downie I. S. and Foster G. N. (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82, 1112–1129.CrossRefGoogle Scholar
  51. Roff D. A. (1990) The evolution of flightlessness in insects. Ecological Monographs 60, 389–421.CrossRefGoogle Scholar
  52. Šerić Jelaska L. and Durbešić P. (2009) Comparison of the body size and wing form of carabid species (Coleoptera: Carabidae) between isolated and continuous forest habitats. Annales de la Société Entomologique de France 45, 327–338.CrossRefGoogle Scholar
  53. Shahabuddin S., Hidayat P., Manuwoto S., Noerdjito W. A., Tscharntke T. and Schulze C. H. (2010) Diversity and body size of dung beetles attracted to different dung types along a tropical land-use gradient in Sulawesi, Indonesia. Journal of Tropical Ecology 26, 53–65.CrossRefGoogle Scholar
  54. Shelomi M. (2012) Where are we now? Bergmann’s rule sensu lato in insects. American Naturalist 180, 511–519.CrossRefGoogle Scholar
  55. Smith R. J., Hines A., Richmond S., Merrick M., Drew A. and Fargo R. (2000) Altitudinal variation in body size and population density of Nicrophorus investigator (Coleoptera: Silphidae). Environmental Entomology 29, 290–298.CrossRefGoogle Scholar
  56. Sokal R. R. and Rohlf F. J. (1995) Biometry, 3rd edn. W.H. Freeman and Company, New York.Google Scholar
  57. Semme L., Davidson R. L. and Onore G. (1996) Adaptations of insects at high altitudes of Chimborazo, Ecuador. European Journal of Entomology 93, 313–318.Google Scholar
  58. Terborgh J. (1977) Bird species diversity on an Andean elevational gradient. Ecology 58, 1007–1019.CrossRefGoogle Scholar
  59. Thiele H. U. (1977) Carabid Beetles in their Environments: A Study on Habitat Selection by Adaptations in Physiology and Behaviour. Springer-Verlag, Berlin. 369 pp.CrossRefGoogle Scholar
  60. Tsuchiya Y., Takami Y., Okuzaki Y. and Sota T. (2012) Genetic differences and phenotypic plasticity in body size between high- and low-altitude populations of the ground beetle Carabus tosanus. Journal of Evolutionary Biology 25, 1835–1842.CrossRefGoogle Scholar
  61. Wagner D. L. and Liebherr J. K. (1992) Flightlessness in insects. Trends in Ecology and Evolution 7, 216–220.CrossRefGoogle Scholar
  62. Williams J. W., Jackson S. T. and Kutzbach J. E. (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences 104, 5738–5742.CrossRefGoogle Scholar
  63. Young K. and León B. (1999) Peru’s Humid Eastern Montane Forests. Center for Research on the Cultural and Biological Diversity of Andean Rainforests (DIVA), Copenhagen. 306 pp.Google Scholar
  64. Zera A. J. and Denno R. F. (1997) Physiology and ecology of dispersal polymorphism in insects. Annual Review of Entomology 42, 207–230.CrossRefGoogle Scholar

Copyright information

© ICIPE 2014

Authors and Affiliations

  1. 1.Department of BiologyWake Forest UniversityWinston-SalemUSA

Personalised recommendations