Advertisement

Effect of three commercial biopesticides of neem (Azadirachta indica) and Bacillus thuringiensis on legume pod borer (Maruca vitrata) (Lepidoptera: Crambidae) in Thailand

  • Prabhat KumarEmail author
  • Lu-Ying Zoe Huang
  • R. Srinivasan
Research Paper

Abstract

Maruca vitrata Fabricius (legume pod borer, LPB), the most serious economic pest of legume crops in the tropics, is primarily controlled by chemical pesticide application with serious consequences for the ecosystem and human health. In this study various concentrations of three commercial biopesticides, NeemBaan, Bactospeine Bacillus thuringiensis (Bt) subsp. kurstaki) and Florbac® (Bt aizawai), were tested either in the field or laboratory or in both conditions. In the laboratory experiments, different concentrations of NeemBaan exhibited significant effects on the mortality of all the tested larval instars and a mortality rate of over 80% was recorded at a dose of 3000 ppm. Bactospeine® was found to be more effective against M. vitrata than Florbac®. Bactospeine applied at a lower dose of 500 ppm caused 100% mortality in the firstinstar and second-instar larvae; however, at the same dose, Florbac caused mortality of only 26.67% (first instar) and 20% (second instar). In the field experiments, a higher dose of NeemBaan (6000 ppm) significantly reduced pod damage to approximately 20% in both the first and second cropping seasons. In conclusion, neem- and Bt-based biopesticide products have insecticidal potential to be used in an integrated pest management strategy for controlling M. vitrata in Thailand.

Key words

Maruca vitrata biopesticides neem Bacillus thuringiensis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott W. S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265–267.CrossRefGoogle Scholar
  2. Afun J. V. K., Jackai L. E. N. and Hodgson C. J. (1991) Calendar and monitored insecticide application for the control of cowpea pests. Crop Protection 10, 363–370.CrossRefGoogle Scholar
  3. Ascher K. R. S. (1992) Antifeedants: an overview. The Philippine Entomologist 8, 1117–1123. AVRDC (1996) AVRDC 1995 Report. Asian Vegetable Research and Development Center, Tainan. 187 pp. AVRDC (1997) AVRDC 1996 Report. Asian Vegetable Research and Development Center, Tainan. 172 pp.Google Scholar
  4. Booker R. H. (1965) Pests of cowpea and their control in northern Nigeria. Bulletin of Entomological Research 55, 663–672.CrossRefGoogle Scholar
  5. Chaudhari D. K. (1988) Efficacy of some newer insecticides against pigeonpea pest complex. MSc thesis, Punjabrao Krishi Vidyapeeth, Akola, Maharashtra, India. 90 pp.Google Scholar
  6. Chawla A. A., Kumar M. and Bansal I. (1995) Chemical constituents and biological activity of neem — review. Indian Drugs 32, 57–64.Google Scholar
  7. Dean D. H. (1984) Biochemical genetics of the bacterial insect-control agent Bacillus thuringiensis: basic principles and prospects for genetic engineering. Biotechnology & Genetic Engineering Reviews 2, 341–363.CrossRefGoogle Scholar
  8. Dina S. O. and Medaiyedu J. A. (1976) Field tests with insecticides to control Maruca testulalis and other podboring insects of cowpea in southern Nigeria. Journal of Economic Entomology 69, 173–177.CrossRefGoogle Scholar
  9. Dreyer H., Baumgartner J. and Tamo M. (1994) Seed damaging field pests of cowpea (Vigna unguiculata L. Walp.) in Bénin: occurrence and pest status. International Journal of Pest Management 40, 252–260.CrossRefGoogle Scholar
  10. Ekesi S. (1999) Insecticide resistance in field populations of the legume pod borer, Maruca vitrata Fabricius in Nigeria. International Journal of Pest Management 45, 57–59.CrossRefGoogle Scholar
  11. Faridi B., Pourmirza A. A., Safaralizadehm M. H. and Taghaddosi M. V (2011) Food consumption pattern and baseline susceptibility to Bacillus thuringiensis Berliner var. tenebrionis in Colorado potato beetle larvae. Egyptian Academic Journal of Biological Sciences 4, 39–46.CrossRefGoogle Scholar
  12. Höfte H. and Whiteley H. R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews 53, 242–255.PubMedPubMedCentralGoogle Scholar
  13. Jackai L.E.N. (1983) Efficacy of insecticide applications at different times of day against the legume pod borer, Maruca testulalis (Geyer) (Lepidoptera: Pyralidae), on cowpea in Nigeria. Protection Ecology 5, 245–251.Google Scholar
  14. Jayadevi H. C. and Kumar A. R. V (2011) Why is a crude extract of neem superior to commercial neem formulations? A field test against Plutella xylostella (L.) (Lepidoptera: Plutellidae) in cabbage, pp. 172–181. In Proceedings of the Sixth International Workshop on Management of the Diamondback Moth and other Crucifer Insect Pests (edited by R. Srinivasan, A. M. Shelton and H. L. Collins). AVRDC — The World Vegetable Center, Tainan.Google Scholar
  15. Jeyarani S. and Karuppuchamy P. (2010) Investigations on the enhancing efficacy of granulovirus on nucleopolyhedrovirus of Helicoverpa armigera (Hubner). Journal of Biopesticides 3, 172–176.Google Scholar
  16. Karel A. K. (1985) Yield losses from and control of bean pod borers, Maruca testulalis (Lepidoptera: Pyralidae) and Heliothis armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology 78, 1323–1326.CrossRefGoogle Scholar
  17. Kumar P. and Poehling H. M. (2007) Effects of azadirachtin, abamectin, and spinosad on sweet potato whitefly (Homoptera: Aleyrodidae) on tomato plants under laboratory and greenhouse conditions in the humid tropics. Journal of Economic Entomology 100, 411–420.CrossRefGoogle Scholar
  18. Kumar P., Poehling H. M. and Borgemeister C. (2005) Effects of different application methods of azadirachtin against sweet potato whitefly Bemisia tabaci Gennadius (Horn., Aleyrodidae) on tomato plants. Journal of Applied Entomology 129, 489–497.CrossRefGoogle Scholar
  19. Lal S. S. and Yadava C. P. (1988) Efficacy of certain insecticides against pod borers infesting pigeonpea. Pesticides 22, 30–35.Google Scholar
  20. Lambert B. and Peferoen M. (1992) Insecticidal promise of Bacillus thuringiensis. Journal of Biosciences 42, 112–122.CrossRefGoogle Scholar
  21. Otieno W. A. and Karikuri C. W. (1991) Field efficacy of Bacillus thuringiensis against tropical cereal stem borers, Chilo partellus, Busseola fusca and Maruca testulalis in Kenya, Vol. 1. In 11th International Congress of Plant Protection: Proceedings, International Plant Protection: Focus on the Developing World, 5–9 October 1987, Manila, Philippines (edited by E. D. Magallona). The Congress, Manila.Google Scholar
  22. Pereyra P. J., Rossini G. B. and Darrigran G. (2012) Toxicity of neem oil, a potential biocide against the invasive mussel Limnoperna fortunei (Dunker 1857). Anais da Academia Brasileira de Ciências 84, 1065–1071.CrossRefGoogle Scholar
  23. Phompanjai P. and Jamjanya T. (2000) Study on pod borer (Maruca vitrata Fabricius) widespread and insecticide spraying time in cowpea, pp. 184–192. In Proceedings of the National Mungbean Research Conference VIII, 18–20 January 2000, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand. Department of Agriculture Extension, and The Thai Research Fund, Bangkok.Google Scholar
  24. SAS (1999) SAS/AF Software: FRAME Entry Usage and Reference, Version 8. SAS Institute, Inc., Cary, North Carolina.Google Scholar
  25. Schaaf O., Jarvis A. P., Van der Esch S. A., Giagnacovo G. and Oldham N. J. (2000) Rapid and sensitive analysis of azadirachtin and related triterpenoids from neem (Azadirachta indica) by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A 886, 89–97.CrossRefGoogle Scholar
  26. Schläger S., Ulrichs C., Srinivasan R., Beran F., Bhanu K. R. M., Mewis I. and Schreiner M. (2012) Developing pheromone traps and lures for Maruca vitrata in Taiwan. Gesunde Pflanzen 64, 183–186.CrossRefGoogle Scholar
  27. Schmutterer H. (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology 35, 271–289.CrossRefGoogle Scholar
  28. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. R. and Dean D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews 62, 775–806.PubMedPubMedCentralGoogle Scholar
  29. Sieber K.-P. and Rembold H. (1983) The effects of azadirachtin on the endocrine control of moulting in Locusta migratoria. Journal of Insect Physiology 29, 523–527.CrossRefGoogle Scholar
  30. Singh S. R. and Allen D. J. (1980) Pests, diseases, resistance and protection of Vigna unguiculata (L.) Walp, pp. 419–433. In Advances in Legume Science (edited by R. J. Summerfield and A. H. Bunting). Royal Botanic Gardens, Kew and Ministry of Agriculture, Fisheries and Food, London.Google Scholar
  31. Singh S. R. and Jackai L. E. N. (1988) The legume pod borer, Maruca testulalis (Geyer): past, present and future research. International Journal of Tropical Insect Science 9, 1–5.CrossRefGoogle Scholar
  32. Singh S. R., Jackai L. E. N., Dos Santos J. H. R. and Adalla C. B. (1990) Insect pests of cowpea, pp. 43–90. In Insect Pests of Tropical Food Legumes (edited by S. R. Singh). Wiley, Chichester.Google Scholar
  33. Sodavy P., Sitha M., Nugent R. and Murphy H. (2000) Farmers’ awareness and perceptions of the effect of pesticides on their health, situation analysis. FAO Community IPM Programme, Field Document, April. Available at: https://doi.org/www.communityipm.org/toxictrail/Documents/Cambodia-SituationAnalysis.pdfGoogle Scholar
  34. Srinivasan R. (2008) Susceptibility of legume pod borer (LPB) Maruca vitrata to 8-endotoxins of Bacillus thuringiensis (Bt) in Taiwan. Journal of Invertebrate Pathology 97, 79–81.CrossRefGoogle Scholar
  35. Srinivasan R., Yule S., Chang J. C., Malini P., Lin M. Y., Hsu Y C. and Schafleitner R. (2012) Towards developing a sustainable management strategy for legume pod borer, Maruca vitrata on yard-long bean in Southeast Asia, pp. 24–26. In Proceedings of the Regional Symposium on High Value Vegetables in Southeast Asia: Production, Supply and Demand (SEAVEG2012), January 2012, Chiang Mai, Thailand (edited by R. Holmer, G. Linwattana, P. Nath and J. D. H. Keatinge). AVRDC — The World Vegetable Center, Publication No. 12–758, Tainan.Google Scholar
  36. Taylor T. A. (1968) The effects of insecticide applications on insect damage and the performance of cowpea in southern Nigeria. Nigerian Agricultural Journal 5, 29–37.Google Scholar
  37. Ulrichs C. and Mewis I. (2004) Seasonal abundance of two armyworm species, Spodoptera exigua (Hübner) and Spodoptera litura (F.) in the Philippines. Communications in Agricultural and Applied Biological Sciences 69, 323–328.PubMedGoogle Scholar
  38. Van der Nat J. M., Van der Sluis W. G., De Silva K. T. D. and Labadie R. P. (1991) Ethnopharmacognostical survey of Azadirachta indica A. Juss (Meliaceae). Journal of Ethnopharmacology 35, 1–24.CrossRefGoogle Scholar
  39. Yule S. and Srinivasan R. (2013) Evaluation of biopesticides against legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Pyralidae), in laboratory and field conditions in Thailand. Journal of Asia-Pacific Entomology 16, 357–360 doi:10.1016/j.aspen.2013.05.001.CrossRefGoogle Scholar

Copyright information

© ICIPE 2014

Authors and Affiliations

  • Prabhat Kumar
    • 1
    Email author
  • Lu-Ying Zoe Huang
    • 1
  • R. Srinivasan
    • 2
  1. 1.Asian Center of Innovation for Sustainable Agriculture Intensification (ACISAI), AITKhlong Lunag, PathumthaniThailand
  2. 2.AVRDC — The World Vegetable CenterShanhua, TainanTaiwan, ROC

Personalised recommendations