Advertisement

Relative abundance and temporal variation of macroinvertebrates in a Venezuelan cloud forest habitat

  • Elvira SanchezEmail author
  • Jonathan Liria
Research Paper

Abstract

Tree-hole phytotelmata encompass the internodal water pools that form in many species of bamboo (Gramineae). Using bamboo traps, we sampled macroinverte-brate communities in a habitat within the subtropical cloud forest of Henri Pittier National Park, Rancho Grande, north-central Venezuela, and quantified the temporal differences in their abundance and composition. In total, 1024 invertebrates were collected during the 7 months between February and August 2008. The insect orders Diptera and Coleoptera were abundant, particularly Culex (Anoedioporpa) conservator Dyar & Knab, Culex (Culex) mollis (Dyar & Knab), Wyeomyia (Wyeomyia) arthrostigma (Lutz) and Toxorhynchites (Lynchiella) theobaldi (Dyar & Knab). The traps also contained predators, detritivores and collectors (filtering and gathering). Macroinvertebrate abundance in the traps was higher during the rainy season. This observation was attributed to a greater abundance of Ephydridae, Blattaria and Culicidae during wetter months, and an increased availability of potential new breeding sites in the environment, which resulted in increased adult eclosion, and higher rates of oviposition in the bamboo traps. Temporal differences in pH and dissolved oxygen levels of trap water were observed.

Key words

phytotelmata bamboo traps macroinvertebrate abundance Diptera Culicidae Ephydridae precipitation cloud forest Venezuela 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armbruster P., Hutchinson R. A. and Cotgreave P. (2002) Factors influencing community structure in South America tank bromeliad fauna. Oikos 96, 225–234.CrossRefGoogle Scholar
  2. Arnell J. H. (1973) Mosquito studies (Diptera, Culicidae) XXXII. A revision of the genus Haemagogus. Contributions of the American Entomological Institute 10, 1–174.Google Scholar
  3. Barrera R. (1996) Species concurrence and the structure of a community of aquatic insects in tree holes. Journal of Vector Ecology 21, 66–80.Google Scholar
  4. Beebe W. and Crane J. (1947) Ecology of Rancho Grande, a subtropical cloud forest in northern Venezuela. Contribution No. 752, Department of Tropical Research. New York Zoological Society 32, 43–60.Google Scholar
  5. Berlin O. G. W. and Belkin J. N. (1980) Mosquito studies (Diptera: Culicidae) XXXVI. Subgenera Aedinus, Tinolestes and Anoedioporpa of Culex. Contributions of the American Entomological lnstitute 17, 1–104.Google Scholar
  6. Bouchard R. W. (2004) Guide to Aquatic Macroinvertebrates of the Upper Midwest. Water Resources Center, University of Minnesota, St Paul, MN, USA. 208 pp.Google Scholar
  7. Burdett A. S. and Watts R. J. (2009) Modifying living space: an experimental study of the influences of vegetation on aquatic invertebrate community structure. Hydrobiologia 618, 161–173.CrossRefGoogle Scholar
  8. Clarke K. R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117–143.CrossRefGoogle Scholar
  9. Epler J. H. (1996) Identification Manual for the Water Beetles of Florida. Department of Environmental Protection, Division of Water Facilities, Tallahassee, Florida, USA. 259 pp.Google Scholar
  10. Fernández H. R. and Domínguez E. (2001) Guía para la determinación de los artrópodos bentónicos Sudamericanos. Serie Investigaciones de UNT, Subserie Ciencias Exactas y Naturales. Editorial Universitaria de Tucumán, Argentina. 282 pp.Google Scholar
  11. Fernández-Badillo A. (2000) El Parque Nacional Henri Pittier Revista Alcance 60. Publicación de la Facultad de Agronomía. Universidad Central de Venezuela. 284 pp.Google Scholar
  12. Fish D. (1983) Phytotelmata: Flora and fauna, pp. 101–128. In Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insects Communities (edited by J. H. Frank and L. P. Lounibos). Plexus Publishing, Medford, New Jersey, USA.Google Scholar
  13. Galindo P., Carpenter S. J. and Trapido H. (1955) Ecological observations on forest mosquitoes of an endemic yellow fever area in Panama. American Journal of Tropical Medicine 3, 98–137.Google Scholar
  14. González R. and Darsie R. Jr (1996) Clave ilustrada para la determinación genérica de larvas de Culicidae de Colombia y el nuevo mundo. Boletín del Museo Entomológico de la Universidad del Valle 4, 21–37.Google Scholar
  15. Greeney H. F. (2001) The insects of plant-held waters: a review and bibliography. Journal of Tropical Ecology 17, 241–260.CrossRefGoogle Scholar
  16. Hammer O. and Harper D. A. (2008) PAST: Palaeontological Statistics, version 1.83. Available at: https://doi.org/folk.uio.no/ohammer/pastGoogle Scholar
  17. Heinemann S. J. and Belkin J. N. (1978) Collection records of the Project ‘Mosquitoes of Middle America’. 11. Venezuela; Guianas: French Guiana, Guyana, Surinam. Mosquito Systematics 10, 365–459.Google Scholar
  18. Huber O. (1986) Ubicación geográfica y fisiográfica, pp. 17–29. In La Selva Nublada de Rancho Grande, Parque Nacional ‘Henri Pittier’ (edited by O. Huber). Fondo Editorial Acta Científica Venezolana.Google Scholar
  19. Kitching R. L. (1971) An ecological study of water-filled tree-holes and their position in the woodland ecosystem. Journal of Animal Ecology 40, 281–302.CrossRefGoogle Scholar
  20. Lane J. (1953) Neotropical Culicidae. Vols I and II illus. University of Sao Paulo, Sao Paulo. 1112 pp.Google Scholar
  21. Lounibos L. P., Frank F. H., Machado-Allison C. E., Ocanto P. and Navarro J. C. (1987) Survival, development and predatory effects of mosquito larvae in Venezuelan phytotelmata. Journal of Tropical Ecology 3, 221–242.CrossRefGoogle Scholar
  22. Louton J., Gelhaus J. and Bouchard R. (1996) The aquatic macrofauna of water-filled bamboo (Poaceae: Bambu-soideae: Guadua) internodes in a Peruvian tropical lowland forest. Biotropica 28, 228–242.CrossRefGoogle Scholar
  23. Machado-Allison C. E., Barrera R., Frank J. H., Delgado L. and Gomez-Cova C. (1985) Mosquito communities in Venezuelan phytotelmata, pp. 79–93. In Ecology of Mosquitoes (edited by L. P. Lounibos, J. R. Rey and J. H. Frank). Florida Medical Entomology Laboratory, Vero Beach, FL.Google Scholar
  24. Machado-Allison C. E., Barrera R., Delgado L., Gómez-Cova C. and Navarro J. C. (1986) Mosquitos (Diptera: Culicidae) de los Fitotelmata de Panaquire, Venezuela. Acta Biológica Venezolana 12, 1–12.Google Scholar
  25. Navarro J. C. (1998) Fauna de mosquitos (Diptera: Culicidae) del Parque Nacional Cerro El Copey y nuevos registros para la Isla de Margarita, Venezuela. Boletín de Entomología Venezolana 13, 187–194.Google Scholar
  26. Navarro J. C. and Machado-Allison C. (1995) Aspectos ecológicos de Sabethes chloropterus (Humboldt) (Diptera: Culicidae) en un bosque húmedo del Edo, Miranda, Venezuela. Boletín de Entomología Venezolana 10, 91–104.Google Scholar
  27. Navarro J. C., Liria J., Piñango H. and Barrera R. (2007) Biogeographic area relationships in Venezuela: A Parsimony analysis of Culicidae-Phytotelmata distribution in national parks. Zootaxa 1547, 1–19.CrossRefGoogle Scholar
  28. Paradise C. J. (1998) Colonization and development of insects in simulated treehole habitats with distinct resource and pH regimes. Ecoscience 5, 39–45.CrossRefGoogle Scholar
  29. Paradise C. J. (2000) Effects of pH and resources on a processing chain interaction in simulated treeholes. Journal of Animal Ecology 69, 651–658.CrossRefGoogle Scholar
  30. Paradise C. J. and Dunson C. J. (1997) Insect species interactions and resource effects in treeholes: are helodid beetles bottom-up facilitators of midge populations? Oecologia 109, 303–312.CrossRefGoogle Scholar
  31. ParksWatch (2006) Park Profile: Henri Pittier National Park. Center for Tropical Conservation, Duke University USA. Available at: https://doi.org/www.parkswatch.orgGoogle Scholar
  32. Ramett A. (2007) Multivariate analyses in microbial ecology. FEMS Microbiology Ecology II, 1–19.Google Scholar
  33. SPSS (2004) SPSS Inc. 1989–2004. Available at: https://doi.org/www.spss.comGoogle Scholar
  34. Seres A. and Ramirez N. (1990) Fenologia vegetativa de monocotiledoneas del bosque nublado de Rancho Grande (Parque Nacional Henri Pittier). Ecotropicos 3, 1–11.Google Scholar
  35. Sokal R. R. and Rohlf F. J. (1981) Biometry. W. H. Freeman and Co., New York, USA. 959 pp.Google Scholar
  36. Varga L. (1928) Ein interessanter Biotop der Bioconöse von Wasserorganismen. Biologisches Zentralblatt 48, 143–162.Google Scholar
  37. Yanoviak S. P. (1999a) Community structure in water-filled tree holes of Panama: effects of hole height and size. Selbyana 20, 106–115.Google Scholar
  38. Yanoviak S. P. (1999b) Effects of leaf litter species on macroinvertebrate community properties and mosquito yield in Neotropical tree hole microcosms. Oecologia 120, 147–155.CrossRefGoogle Scholar
  39. Yanoviak S. P. (2001) The macrofauna of water-filled tree holes on Barro Colorado Island, Panama. Biotropica 33, 110–120.CrossRefGoogle Scholar
  40. Yanoviak S. P. and Fincke O. M. (2005) Sampling methods for water-filled tree holes and their artificial analogues, pp. 168–185. In Insect Sampling (edited by S. Leather). Blackwell Science, London, UK.Google Scholar
  41. Yanoviak S. P., Lounibos L. P. and Weaver S. C. (2006) Land use affects macroinvertebrate community composition in Phytotelmata in the Peruvian Amazon. Annals of the Entomological Society of America 99, 1172–1181.CrossRefGoogle Scholar

Copyright information

© ICIPE 2009

Authors and Affiliations

  1. 1.Departamento de Biología, Facultad Experimental de Ciencias y TecnologíaUniversidad de CaraboboVenezuela

Personalised recommendations