Advertisement

Variation in the coding and non-coding sequences of the DH-PBAN gene of diapause and non-diapause silkworm races

  • R. Saravanakumar
  • K. M. PonnuvelEmail author
  • C. K. Kamble
Article

Abstract

Diapause hormone (DH) and pheromone biosynthesis-activating neuropeptide (PBAN) code for the diapause gene (DH-PBAN) of Bombyx mori Linnaeus. The DH-PBAN gene sequence from the BLAST database was searched against B. mori genomic gene sequences for similarity. Results showed maximum homology with a genomic contig (accession no. D16230). Primers were designed for the intron, exon and promoter regions of the DH-PBAN gene sequence. The corresponding regions were amplified using genomic DNA as template and products of diapause and non-diapause silkworm races were compared. There was no variation in the 425 bp intron and 254 bp exon regions. However, 1.3% nucleotide sequence variation was observed in selected silkworm races. The promoter region showed 4.2% single nucleotide variation in the diapause and non-diapause silkworm races. The promoter region of the diapause gene showed variations in the sequence of the POU (Pit 1, Oct 1 and Unc-86)-binding site of non-diapause and diapause races of B. mori. In phylogenetic analysis, B. mori formed a cluster with other silkworms of the Bombycidae family, whereas the Noctuidae family formed a separate cluster, indicating that the diapause gene is conserved across the insect taxa.

Key words

diapause DH-PBAN silkworm multivoltine bivoltine Bombyx mori 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul S. F., Madden T. L. and Schaffer A. A. (1997) Gapped BLAST and PSI BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402.CrossRefGoogle Scholar
  2. Choi M. Y., Lee J. M., Han K. S. and Boo K. S. (2004) Identification of a new member of PBAN family and immunoreactivity in the central nervous system from Adoxophyes sp. (Lepidoptera: Tortricidae). Insect Biochemistry and Molecular Biology 34, 927–935.CrossRefGoogle Scholar
  3. Choi M. Y., Tanaka M., Kataoka H., Boo S. K. and Tatsuki S. (1998) Isolation and identification of the cDNA encoding the pheromone biosynthesis activating neuropeptide and additional neuropeptides in the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). Insect Biochemistry and Molecular Biology 28, 759–766.CrossRefGoogle Scholar
  4. Denlinger D. L. (1985) Hormonal control of diapause, pp. 353–412. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 8 (Edited by G. A. Kerkut and L. I. Gilbert). Pergamon Press, Oxford.Google Scholar
  5. Iglesias F., Marco P., Francois M. C., Camps F., Fabrias G. and Jacquin-Joly E. (2002) A new member of the PBAN family in Spodoptera littoralis: Molecular cloning and immunovisualisation in scotophase hemolymph. Insect Biochemistry and Molecular Biology 32, 901–908.CrossRefGoogle Scholar
  6. Imai K., Konno T., Nakazawa Y., Komiya T., Isobe M., Koga K., Goto T., Yaginuma T., Sakakibara K., Hasegawa K. and Yamashita O. (1991) Isolation and structure of diapause hormone of the silkworm, Bombyx mori. Proceedings of the Japan Academy Series B 67, 98–101.CrossRefGoogle Scholar
  7. Jacquin-Joly E., Burnet M., Francois M. C., Ammar D., Meillour P. N. and Descoins C. (1998) cDNA cloning and sequence determination of the pheromone biosynthesis activating neuropeptide of Mamestra brassicae: A new member of the PBAN family. Insect Biochemistry and Molecular Biology 28, 251–258.CrossRefGoogle Scholar
  8. Katsuno S. (1989) Spermatogenesis and the abnormal germ cells in Bombycidae and Saturniidae. Journal of the Faculty of Agriculture, Hokkaido University 64, 21–34.Google Scholar
  9. Krishnaswami S. (1978) New technology of silkworm rearing. Bulletin No. 2., Central Sericultural Research and Training Institute, Mysore, Central Silk Board, Government of India.Google Scholar
  10. Kumar S., Tamura K. and Nei M. (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5, 150–163.CrossRefGoogle Scholar
  11. Lees A. D. (1955) The Physiology of Diapause in Arthropods. Cambridge University Press, Cambridge.Google Scholar
  12. Ma P. W. K., Knipple D. C. and Roelofs W. L. (1994) Structural organization of the Helicoverpa zea gene encoding the precursor protein for pheromone biosynthesis activating neuropeptide and other neuropeptides. Proceedings of the National Academy of Sciences of the USA 91, 6506–6510.CrossRefGoogle Scholar
  13. Nagaraja G. M. and Nagaraju J. (1995) Genome fingerprinting of the silkworm Bombyx mori using random arbitrary primers. Electrophoresis 16, 1633–1638.CrossRefGoogle Scholar
  14. Saravanakumar R. and Ponnuvel K. M. (2007) Egg diapause induction in multivoltine silkworm Bombyx mori for long-term germplasm preservation. International Journal of Industrial Entomology 15, 291–297.Google Scholar
  15. Sato Y., Oguchi M., Menjo N., Imai K., Saito H., Ikeda M., Isobe M. and Yamashita O. (1993) Precursor poly-protein for multiple neuropeptides secreted from the subesophageal ganglion of the silkworm Bombyx mori: Characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proceedings of the National Academy of Science USA 90, 3251–3255.CrossRefGoogle Scholar
  16. Saunders D. S. (1982) Insect Clocks, 2nd edn, pp. 137–192. Pergamon Press, Oxford.Google Scholar
  17. Thompson J. D., Higgins D. G. and Gibson T. J. (1994) Clustal W: Improving the sensitivity of progressive multiple sequence alignment through weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.CrossRefGoogle Scholar
  18. Velu D., Ponnuvel K. M., Muthulakshmi M., Sinha R. K. and Qadri S. M. (2008) Analysis of genetic relationship in mutant silkworm strains of Bombyx mori using Inter Simple Sequence Repeat (ISSR) markers. Journal of Genetics and Genomics 35, 291–297.CrossRefGoogle Scholar
  19. Watanabe K., Hull J. J., Niimi T., Imai K., Matsumoto S., Yaginuma T. and Kataoka H. (2007) FXPRL-amide peptides induce ecdysteroidogenesis through a G-protein coupled receptor expressed in the prothor-acic gland of Bombyx mori. Molecular and Cellular Endocrinology 273, 51–58.CrossRefGoogle Scholar
  20. Wheelan S. I., Church D. M. and Ostell J. M. (2001) SPIDEY—a tool for mRNA to genomic alignments. Genome Research 11, 1952–1957.CrossRefGoogle Scholar
  21. Xu W. H. and Denlinger D. L. (2003) Molecular characterization of prothoracicotropic hormone and diapause hormone in Heliothis virescens during diapause, and a new role for diapause hormone. Insect Molecular Biology 12, 509–516.CrossRefGoogle Scholar
  22. Xu W. H. and Denlinger D. L. (2004) Identification of a cDNA encoding DH-PBAN and other FXPRL neuropeptides from the tobacco hornworm, Manduca sexta, and expression associated with pupal diapause. Peptides 25, 1099–1106.CrossRefGoogle Scholar
  23. Xu W. H., Sato Y., Ikeda M. and Yamashita O. (1995) Molecular characterization of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) of the silkworm, Bombyx mori and its distribution in some insects. Biochimica et Biophysica Acta 1261, 83–89.CrossRefGoogle Scholar
  24. Yamashita O. (1996) Diapause hormone of the silkworm, Bombyx mori: Structure, gene expression and function. Journal of Insect Physiology 42, 669–679.CrossRefGoogle Scholar
  25. Yamashita O. and Hasegawa K. (1985) Embryonic diapause, pp. 407–434. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 1 (Edited by C. A. Kerkut and L. I. Gilbert). Pergamon Press, Oxford.Google Scholar
  26. Zhang T. Y., Sun J. S., Liu W. Y., Kang L., Shen J. L. and Xu W. H. (2005) Structural characterization and transcriptional regulation of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide in the cotton bollworm, Helicoverpa armigera. Biochimica et Biophysica Acta 1728, 44–52.CrossRefGoogle Scholar
  27. Zhang T. Y., Sun J. S., Zhang L. B., Shen J. L. and Xu W. H. (2004) Cloning and expression of the cDNA encoding the FXPRL family of peptides and a functional analysis of their effect on breaking pupal diapause in Helicoverpa armigera. Journal of Insect Physiology 50, 25–33.CrossRefGoogle Scholar
  28. Zhao J. Y., Xu W. H. and Kang L. (2004) Functional analysis of the SGNP I in the pupal diapause of the oriental budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). Regulatory Peptides 118, 25–31.CrossRefGoogle Scholar

Copyright information

© ICIPE 2008

Authors and Affiliations

  • R. Saravanakumar
    • 1
  • K. M. Ponnuvel
    • 1
    Email author
  • C. K. Kamble
    • 1
  1. 1.Biotechnology LaboratoryCentral Sericultural Germplasm Resources CentreHosurIndia

Personalised recommendations