Advertisement

Sequestration of storage protein 1 (SP1) in differentiated fat body tissues of the female groundnut pest Amsacta albistriga (Lepidoptera: Arctiidae)

  • Raman Chandrasekar
  • Prusothaman Sumithra
  • Seo Sook Jae
  • Muthukalingan KrishnanEmail author
Article

Abstract

The transformation from larval caterpillar to non-feeding pupa and adult moth involves a complete remodelling and restructuring of an insect and its organs. In the groundnut pest Amsacta albistriga Walker, the female sex-specific storage protein 1 (SP1) was monitored from last larval instars, during pupal development to the adult stage. Staining intensity of SP1 (which resolved at 82 kDa) in the peripheral fat body (PF) tissues subjected to 10% SDS-PAGE was maximum at mid-stage last larval instars and declined subsequently. However, in perivisceral fat body (PVF) tissues, the staining intensity of SP1 increased significantly from mid-stage final instar. The presence of SP1 during pupal ovary and adult ovariole development and its availability during egg development was confirmed by immunoblot analysis. Electron microscopy data revealed that the decline of biosynthesis of SP1 in PF tissues and its disintegration were associated with the appearance of irregular nucleus and autophagic vacuoles during transformation of larva to pupa. In vitro and in vivo studies using [S]-methionine-labelled storage proteins showed that, unlike PF tissues, PVF tissue sequestered a significant amount of labelled SP1. During this transformation, SP1 was mainly sequestered as storage protein granules until they served as sources of amino acids for the production of egg yolk proteins. Localization of clathrin-coated pits and crystalline storage proteins was confirmed by immunogold tracer techniques.

Key words

Amsacta albistriga hexamerin storage protein 1 peripheral fat body perivisceral fat body receptor-mediated endocytosis protein granules immunogold labelling [35S]-methionine ovary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bean D. W. and Silhacek D. L. (1989) Changes in the titer of the female-prodominant storage protein (81 kDa) during larval and pupal development of the wax moth, Galleria mellonela. Archives of Insect Biochemistry and Physiology 10, 333–348.CrossRefGoogle Scholar
  2. Beintema J. J., Stam W. T., Hazes B. and Smidt M. P. (1994) Evolution of arthropod hemocyanins and insect storage proteins (hexamerins). Molecular Biology and Evolution 11, 493–503.PubMedGoogle Scholar
  3. Bonner M. V. and Laskey R. A. (1974) A film detection method for tritium labeled proteins and nucleic acids in Polyacrylamide gels. European Journal of Biochemistry 46, 83–88.PubMedCrossRefGoogle Scholar
  4. Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Burmester T. and Scheller K. (1992) Identification of binding proteins involved in the stage-specific uptake of arylphorin by the fat body cells of Calliphora vicina. Insect Biochemistry and Molecular Biology 22, 211–220.CrossRefGoogle Scholar
  6. Burmester T. and Scheller K. (1997) Conservation of hexamerin endocytosis in Diptera. European Journal of Biochemistry 244, 713–720.PubMedCrossRefGoogle Scholar
  7. Burmester T. and Scheller K. (1999) Ligands and receptors: Common theme in insect storage protein transport. Naturwissenschaften 86, 468–474.PubMedCrossRefGoogle Scholar
  8. Capurro M., Moreira-Ferro C. K., Marinotti O., James A. A. and de Bianchi A. G. (2000) Expression pattern of the larval and adult hexamerin genes of Musca domestica. Insect Molecular Biology 9, 169–177.PubMedCrossRefGoogle Scholar
  9. Chandrasekar R. (2006) Expression and sequestration of SP1 in differentiated fat body tissue of red hairy caterpillar, Amsacta albistriga. PhD Thesis, Bharathidasan University, 150 pp.Google Scholar
  10. Chandrasekar R., Suganthi L. M. and Krishnan M. (2007a) Intraovarian synthesis and tissue distribution of hexameric storage protein-1 in the ovary of red hairy caterpillar, Amsacta albistriga. Journal of Asia-Pacific Entomology 10, 1–10.CrossRefGoogle Scholar
  11. Chandrasekar R., Suganthi L., Monohar N. X. and Krishnan M. (2007b) Expression of silk gene in response to P-soyatose (hydrolysed soy bean protein) supplementation in the fifth instar male larvae of Bombyx mori. Journal of Cellular and Molecular Biology 6(2), 163–174.Google Scholar
  12. Cheon H. M., Kim H. J., Chung D. H., Kim M. O., Park J. S., Yun C. Y. and Seo S. J. (2001) Local expression and distribution of a storage protein in ovary of Hyphantria cunea. Archives of Insect Biochemistry and Physiology 48, 111–120.PubMedCrossRefGoogle Scholar
  13. Collins J. V. and Downe A. E. R. (1970) Selective accumulation of hemolymph protein by the fat body of Galleria mellonella. Journal of Insect Physiology 16, 1697–1708.CrossRefGoogle Scholar
  14. Dean R. L., Collins J. V. and Locke M. (1985) Structure of fat body, pp. 156–210. In Comprehensive Insect Physiology Biochemistry and Pharmacology (Edited by G. A. Kerkut and L. I. Gilbert). Vol. 4. Pergamon Press, Oxford.Google Scholar
  15. De Loof A. and Lagasse A. (1970) Juvenile hormone and the ultra structural properties of the fat body of the adult Colorado potato beetle, Leptinotarsa decemlineata Say. Zeitschrift für Zellforschung Und Mikroskopische Anatomie 106, 439–450.PubMedCrossRefGoogle Scholar
  16. Dortland J. F. and Esch Th. H. (1979) A fine structural survey of the development of the adult fat body of Leptinotarsa decemlineata. Cell Tissue Research 201, 423–430.PubMedCrossRefGoogle Scholar
  17. Hansen I. A., Meyer S. R., Schafer I. and Scheller K. (2002) Interaction of the anterior fat body protein with the hexamerin receptor in the blowfly Calliphora vicina. European Journal of Biochemistry 269, 954–960.PubMedCrossRefGoogle Scholar
  18. Haunerland N. H. (1996) Insect storage proteins: Gene families and receptors. Insect Biochemistry and Molecular Biology 26, 755–765.PubMedCrossRefGoogle Scholar
  19. Haunerland N. H., Nair K. K. and Bowers W. S. (1990) Fat body heterogeneity during development of Heliothis zea. Insect Biochemistry 20, 829–837.CrossRefGoogle Scholar
  20. Haunerland N. H. and Shirk P. D. (1995) Regional and functional differentiation in the insect fat body. Annual Review of Entomology 40, 121–145.CrossRefGoogle Scholar
  21. Jensen P. V. and Borgesen L. W. (2000) Regional and functional differentiation in the fat body of pharaoh’s ant queens, Monomorium pharaonis L. Arthropod Structure & Development 29, 171–184.CrossRefGoogle Scholar
  22. Jinwal U. K., Zakharkin S. O., Litvinova O. V., Jain S. and Benes H. (2006) Sex-, stage- and tissue-specific regulation by a mosquito hexamerin promoter. Insect Molecular Biology 15, 301–311.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kaliafas A. D., Marmaras V. J. and Christodoulous C. (1984) Immunocytochemical and electrophoretic studies on the localization of the major haemolymph protein (ceratitins) Ceratitis capitata during development. Wilhelm Roux’s Archives of Developmental Biology 194, 37–43.PubMedCrossRefGoogle Scholar
  24. Kanost M. R., Kawooya J. K., Law J. H., Ryan R. O., Van Heusdan M. C. and Zeigler R. (1990) Insect haemolymph proteins. Advances in Insect Physiology 22, 299–396.CrossRefGoogle Scholar
  25. Keeley L. (1985) Physiology and biochemistry of the fat body, pp. 211–248. In Comprehensive Insect Physiology Biochemistry and Pharmacology (Edited by G. A. Kerkut and L. I. Gilbert). Vol. 3. Pergamon Press, Oxford.Google Scholar
  26. Kim H. R., Seo S. J. and Mayer R. T. (1989) Properties, synthesis, and accumulation of storage proteins in Pieris rapae L. Archives of Insect Biochemistry and Physiology 10, 215–228.CrossRefGoogle Scholar
  27. Kinnear L. E. and Thomson J. A. (1975) Nature, origin and fat of major heamolymph proteins in Calliphora. Insect Biochemistry 5, 531–552.CrossRefGoogle Scholar
  28. Kiran Kumar N., Ismail S. M. and Dutta-Gupta A. (1997) Uptake of storage proteins in the rice moth Corcyra cephalonica: Identification of storage protein binding proteins in the fat body cell membranes. Insect Biochemistry and Molecular Biology 27, 269–278.Google Scholar
  29. Konig M., Agrawal O. P., Schenkel H. and Scheller K. (1986) Incorporation of calliphorin into the cuticle of the developing blowfly, Calliphora vicina. Wilhelm Roux’s Archives of Developmental Biology 195, 296–301.CrossRefGoogle Scholar
  30. Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227, 680–685.CrossRefGoogle Scholar
  31. Levenbook L. (1985) Insect storage proteins, pp. 307–346. In Comprehensive Insect Physiology Biochemistry and Pharmacology (Edited by G. A. Kerkut and L. I. Gilbert). Vol. 10. Pergamon Press, Oxford.Google Scholar
  32. Locke M. and Collins J. V (1965) The structure and formation of the protein granules in the fat body of an insect. Journal of Cell Biology 26, 857–885.PubMedCrossRefGoogle Scholar
  33. Locke M. and Collins J. V (1968) Protein uptake into multivesicular bodies and storage granules in the fat body of an insect. Journal of Cell Biology 36, 453–483.PubMedCrossRefGoogle Scholar
  34. Massey H. C. Jr, Kejzlarova-Lepesant J., Willis R. L., Castleberry A. B. and Benes H. (1997) The Drosophila Lsp-1 β gene: A structural and phylogenetic analysis. European Journal of Biochemistry/FEBS 245, 199–207.CrossRefGoogle Scholar
  35. Miller S. G. and Silhacek D. L. (1982) The synthesis and uptake of haemolymph storage protein by the fat body of the greater wax moth, Galleria mellonella. Insect Biochemistry 12, 293–300.CrossRefGoogle Scholar
  36. Müller F., Adori C. and Sass M. (2004) Autophagic and apoptotic features during programmed cell death in the fat body of the tobacco hornworm (Manduca sexto). European Journal of Cell Biology 83, 67–78.PubMedCrossRefGoogle Scholar
  37. Munn E. A. and Greville G. D. (1969) The soluble proteins of developing Calliphora erythocephala particularly calliphorin and similar proteins in other insects. Journal of Insect Physiology 15, 1935–1950.CrossRefGoogle Scholar
  38. Ogawa K. and Tojo S. (1981) Quantitative changes of storage proteins and vitellogenin during the pupal-adult development in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Applied Entomology and Zoology 16, 288–296.CrossRefGoogle Scholar
  39. Pan M. and Telfer W. (1992) Selectivity in storage hexamerin cleaning demonstrated with hemolymph transfusion between Hyalophora cecropia and Actias luna. Archives of Insect Biochemistry and Physiology 19, 203–221.PubMedCrossRefGoogle Scholar
  40. Pan M. L. and Telfer W. (2001) Storage hexamer utilization in two lepidopterans: Differences correlated with the timing of egg formation. Journal of Insect Science 1, 1–9.CrossRefGoogle Scholar
  41. Peter M. G. and Scheller K. (1991) Arylphorins and the integument, pp. 115–124. In Physiology of the Insect Epidermis (Edited by K. Binnington and A. Retnakaran). CSIRO, Melbourne.Google Scholar
  42. Riddiford L. M. and Law J. H. (1983) Larval serum proteins of Lepidoptera, pp. 75–85. In The larval Serum Proteins of Insects: Functions, Biosynthesis and Genetics (Edited by K. Scheller). Thieme-Verlag, Stuttgart, Germany.Google Scholar
  43. Reynolds E. S. (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology 17, 208–212.PubMedCrossRefGoogle Scholar
  44. Reynolds S. E. (1990) Feeding in caterpillars - maximizing or optimizing food acquisition? Animal Nutrition and Transport Processes 5, 106–118.Google Scholar
  45. Roberts D. B., Wolf J. and Akam M. E. (1977) The developmental profiles of two major hemolymph proteins from Drosophila melanogaster. Journal of Insect Physiology 23, 871–878.PubMedCrossRefGoogle Scholar
  46. Ryan R. O., Keim P. S., Wells M. A. and Law J. H. (1985) Purification properties of a predominantly female-specific protein from the hemolymph of the larvae of the tobacco hornworm, Manduca sexta. Journal of Biological Chemistry 260, 782–787.PubMedGoogle Scholar
  47. Salerno A. P., Dansa-Petretski M., Silva-Neto M. A. C., Coelho H. S. L. and Masuda H. (2002) Rhodnius prolixus vitellin is composed of three different populations: Comparison with vitellogenin. Insect Biochemistry and Molecular Biology 32, 709–717.PubMedCrossRefGoogle Scholar
  48. Scheller K., Zimmerman H. P. and Sekeris C. E. (1990) Calliphorin, a protein involved in cuticle formation of the blowfly, Calliphora vicina. Verlag der Zeitschrift Naturforschchung C 35, 387–389.CrossRefGoogle Scholar
  49. Seo S. J., Kang Y., Chen H. and Kim H. (1998) Distribution and accumulation of SP-1 in ovary of Hypyantria cunea Drury. Archives of Insect Biochemistry and Physiology 37, 115–128.PubMedCrossRefGoogle Scholar
  50. Shirk P. D. and Malone C. C. (1989) Regional differentiation of fat bodies in larvae of the Indian meal moth Plodia interpunctella. Archives of Insect Biochemistry and Physiology 12, 187–199.CrossRefGoogle Scholar
  51. Silhacek D. L., Miller S. G. and Murphy C. L. (1994) Purification and characterization of flavin-binding storage protein from the haemolymph of Galleria mellonella. Archives of Insect Biochemistry and Physiology 25, 55–72.PubMedCrossRefGoogle Scholar
  52. Sonoda S., Fukumoto K., Izumi Y., Ashfaq M., Yoshida H. and Tsumuki H. (2006) Methionine-rich storage protein gene in the rice stem borer, Chilo suppressalis, is expressed during diapause in response to cold acclimation. Insect Molecular Biology 15, 853–859.PubMedCrossRefGoogle Scholar
  53. Telfer W. H., Keim T. S. and Law J. H. (1983) Arylphorin, a new protein from Hyalophora cecropia: Comparison with calliphorin and manducin. Insect Biochemistry 13, 601–613.CrossRefGoogle Scholar
  54. Telfer W. H. and Kunkel J. (1991) The function and evolution of insect storage hexamerins. Annual Review of Entomology 36, 205–228.PubMedCrossRefGoogle Scholar
  55. Telfer W. H. and Pan M. L. (2003) Storage hexamer utilization in Manduca sexta. Journal of Insect Science 3, 1–6.CrossRefGoogle Scholar
  56. Tojo S., Betchaku T., Ziccardi V. J. and Wyatt G. R. (1978) Fat body protein granules and storage protein in the silkmoth Hyalophora cecropia. Journal of Cell Biology 78, 823–838.PubMedCrossRefGoogle Scholar
  57. Tojo S., Kiguchi K. and Kimura S. (1981) Hormonal control of storage protein synthesis and uptake by the fat body in the silk worm, Bombyx mori. Journal of Insect Physiology 27, 491–497.CrossRefGoogle Scholar
  58. Tojo S., Nakata M. and Kobayashi M. (1980) Storage proteins in the silkworm, Bombyx mori. Insect Biochemistry 10, 289–303.CrossRefGoogle Scholar
  59. Towbin H., Staehelin T. and Gordon J. (1979) Electro-phoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences of the USA 76, 4350–4354.PubMedCrossRefGoogle Scholar
  60. Ueno K. and Natori S. (1987) Possible involvement of lumichrome in the binding of storage protein to its receptor in Sarcophaga peregrine. Journal of Biological Chemistry 262, 12780–12784.PubMedGoogle Scholar
  61. Vanishree V., Nirmala X., Arul E. and Krishnan M. (2005) Differential sequestration of storage proteins by various fat body tissues during post larval development in silkworm, Bombyx mori L. Invertebrate Reproduction and Development 48, 81–88.CrossRefGoogle Scholar
  62. Vanishree V., Nirmala X. and Krishnan M. (1999) Differential synthesis of storage protein by various fat body tissues during development of female silkworm, Bombyx mori. SAAS Bulletin: Biochemistry and Biotechnology 12, 69–89.Google Scholar
  63. von Gaudecker B. (1963) Über den Formenwechsel einiger Zellorganelle bei der Bildung der Reservestoffe im Fettkörper von Drosophila-Larven. Zeitschrift für Naturforschung 61, 56–91.CrossRefGoogle Scholar
  64. Wang Z. and Haunerland N. H. (1991) Ultrastructural study of storage protein granules in fat body of the corn earworm Heliothis zea. Journal of Insect Physiology 37, 353–363.CrossRefGoogle Scholar
  65. Wang Z. and Haunerland N. H. (1992) Fate of differentiated fat body tissues during metamorphosis of Helicoverpa zea. Journal of Insect Physiology 38, 199–213.CrossRefGoogle Scholar
  66. Wang Z. and Haunerland N. H. (1993) Storage protein uptake in Helicoverpa zea. Purification of the very high density lipoprotein receptor from perivisceral fat body. Journal of Biological Chemistry 268, 16673–18878.PubMedGoogle Scholar
  67. Wheeler D. E., Tuchinskaya I., Buck N. A. and Tabashnik B. E. (2000) Hexameric storage proteins during metamorphosis and egg production in the diamond-back moth, Plutella xylostella (Lepidoptera). Journal of Insect Physiology 46, 951–958.PubMedCrossRefGoogle Scholar
  68. Willott E., Bew L. K., Nagle R. B. and Wells M. A. (1988) Sequential structural changes in the fat body of the tobacco hornworm, Manduca sexta, during the fifth larval stadium. Tissue and Cell 20, 635–643.PubMedCrossRefGoogle Scholar
  69. Wyatt G. (1991) Gene regulation in insect reproduction. Invertebrate Reproduction and Development 20, 1–35.CrossRefGoogle Scholar
  70. Wyatt G. and Pan M. (1978) Insect plasma proteins. Annual Review of Biochemistry 47, 779–817.PubMedCrossRefGoogle Scholar

Copyright information

© ICIPE 2008

Authors and Affiliations

  • Raman Chandrasekar
    • 1
    • 2
  • Prusothaman Sumithra
    • 2
  • Seo Sook Jae
    • 1
  • Muthukalingan Krishnan
    • 2
    Email author
  1. 1.Division of Applied Life SciencesGyeongsang National UniversityJinjuSouth Korea
  2. 2.Insect Molecular Biology Laboratory, Department of Environmental Biotechnology, School of Environmental SciencesBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations