Effects of Peganum harmala (Zygophyllaceae) seed extracts on the development of Tribolium castaneum (Coleoptera: Tenebrionidae)

  • Rachid Jbilou
  • Fouad SayahEmail author


The effects of methanol extract of Peganum harmala L. seeds were evaluated against Tribolium castaneum (Herbst). Larval growth was inhibited and food intake reduced when the extract was incorporated into the diet at concentrations of 2.5,5 and 10%. All doses caused an increase in the duration of larval period and completely inhibited F0i progeny production. The main body metabolites were determined in last-instar larvae after feeding for 8 days on the diet treated with different doses. Protein and lipid contents were decreased with concentrations >2.5%. Glycogen content was reduced at a concentration of 10%. Tribolium castaneum larvae possessed two major and one minor α-amylase isoforms as determined by gel assays. Larvae fed the treated diet presented less activity of the major isoforms, while activity of the minor isoform was totally inhibited. The activity of this enzyme is not inhibited in vitro by seed extracts. Histological studies showed that P. harmala extracts caused a severe cytotoxicity on the epithelial cells of the midgut resulting in marked vacuolization of the cytoplasm and a large intercellular space. These findings suggest that seed extracts of P. harmala exert their toxic effect by severely damaging the midgut epithelial cells. This naturally occurring plant extract could be useful for control of T. castaneum.

Key words

Tribolium castaneum Peganum harmala insecticide α-amylase proteins glycogen lipids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbassi K., Mergaoui L., Kadiri A. Z., Stambouli A. and Ghaout S. (2003a) Activité biologique de l’extrait des graines de Peganum harmala sur le criquet pèlerin (Schistocerca gregaria Forskål, 1775). Journal of Orthoptera Research 12, 71–79.CrossRefGoogle Scholar
  2. Abbassi K., Mergaoui L., Kadiri A. Z., Stambouli A. and Ghaout S. (2003b) Effets des extraits de Peganum harmala (Zygophyllaceae) sur le criquet pèlerin (Schistocerca gregaria Forskål, 1775). Zoologica Baetica 13/14, 203–217.Google Scholar
  3. Baker J. E. (1983) Properties of amylases from midguts of larvae of Sitophilus zeamais and Sitophilus granarium. Insect Biochemistry 13, 421–428.CrossRefGoogle Scholar
  4. Bell C. H. (1978) Limiting concentrations for fumigant efficiency in the control of insect pests, pp. 182–192. In Proceedings of the Second International Working Conference on Stored-Product Entomology, Ibadan, Nigeria.Google Scholar
  5. Bellakhdar J. (1997) Médecine arabe ancienne et savoirs populaires, La pharmacopée traditionnelle. Ed. Ibis presse, Paris. 759 pp.Google Scholar
  6. Benhsain N., Abbassi K., Zouiten H. and Atay-Kadiri Z. (2001) Activit insecticide de Citrullus colocynthis L. (Cucurbitaceae) et de Peganum harmala L. (Zygophyllaceae), pp. 211–217. In Proceeding du Symposium sur la Protection Intgrés des Cultures dans la Région Méditerranéenne, Rabat, Maroc.Google Scholar
  7. Bradford M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248–254.CrossRefGoogle Scholar
  8. Campos E. A. P., Xavier-Filfo J., Silva C. P. and Ary M. B. (1989) Resolution and partial characterization of proteinases and a-amylases from midguts of larvae of the bruchid beetle Callosobruchus maculatus (F). Comparative Biochemistry and Physiology B 92, 51–57.CrossRefGoogle Scholar
  9. Chen M. S., Feng G., Zen K., Richardson C. M., Valdes-Rodriguez S., Reeck G. R. and Kramer K. J. (1992) a-amylases from three species of stored grain coleopterans and their inhibition by wheat and corn proteinaceous inhibitors. Insect Biochemistry and Molecular Biology 22, 261–268.CrossRefGoogle Scholar
  10. Coats J. R., Karr L. L. and Drewes C. D. (1991) Toxicity and neurotoxic effects of monoterpenoids in insects and earthworms, pp. 305–316. In Naturally Occurring Pest Bioregulators (Edited by P. A. Hedin). ACS Symposium Series No. 449. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  11. Dagnelie P. (1973) Théories et méthodes statistiques tome 2. Presses agronomiques, Gembloux, Belgium.Google Scholar
  12. Donahay E., Zalach D. and Rindner M. (1992) Comparison of the sensitivity of the development stages of three strains of the red flour beetle (Coleoptera: Tenebrionidae) to modified atmospheres. Journal of Economic Entomology 85, 1450–1452.CrossRefGoogle Scholar
  13. Franco O. L., Riggen D. J., Melo F. R., Bloch C., Silva C. and Grossi de Sa M. F. (2000) Activity of wheat a-amylase inhibitors towards bruchid a-amylases and structural explanation of observed specificities. European Journal of Biochemistry 267, 2166–2173.CrossRefGoogle Scholar
  14. Garcia M., Donadel O. J., Ardanaz C. E., Tonn C. E. and Sosa M. E. (2005) Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Management Science 61, 612–618.CrossRefGoogle Scholar
  15. Hill J. M. and Schoonhoven A. V. (1981) The use of vegetable oils in controlling insect infestations in stored grains and pulses. Recent Advances in Food Science and Technology 1, 473–481.Google Scholar
  16. Huang Y., Kini R. M. and Ho S. H. (1997) Toxic and antifeedant action of nutmeg oil against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Journal of Stored Products Research 35, 289–298.CrossRefGoogle Scholar
  17. Huang Y., Lam S. L. and Ho S. H. (2000) Bioactivities of essential oil from Elletaria cardamomum (L.) Maton. to Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). Journal of Stored Products Research 36, 107–117.CrossRefGoogle Scholar
  18. Idrissi Hassani L. M., Ould Ahmadou M. A., Chihrane J. and Bouaichi A. (1998) Effet d’une alimentation en Peganum harmala L. (Zygophyllaceae) sur la survie et le développement ovarien du criquet pèlerin Schistocerca gregaria Forskal (Orthoptera, Acrididae). Ethnopharmacologia 23, 26–41.Google Scholar
  19. Kartal M., Altun M. L. and Kurucu S. (2003) HPLC method for the analysis of harmol, harmalol, harmine and harmaline in the seeds of Peganum harmala L. Journal of Pharmaceutical and Biomedical Analysis 31, 263–269.CrossRefGoogle Scholar
  20. Konstantopoulou L., Vassilopoulou L., Mauragani-Tsipi-dov P. and Scouras Z. G. (1992) Insecticidal effects of essential oils. A study of the effects of essential oils extracted from eleven Greek aromatic plants on Drosophila auraria. Experientia 48, 616–619.CrossRefGoogle Scholar
  21. Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227, 680–685.CrossRefGoogle Scholar
  22. Li W. K. (1996) Extraction of alkaloids from Peganum harmala L. and study of their antihydatid chemical composition. Journal of Lanzhou Medical College 22, 16–18.Google Scholar
  23. Martoja R. and Martoja M. (1967) Techniques d’histologie animale (Edited by Cie Masson). Masson & Co., Paris. 345 pp.Google Scholar
  24. Mendiola-Olaya E. M., Jimenez A. V., Rodriguez S. V., Frier J. D. and Labra A. B. (2000) Digestive amylase from the larger grain borer Prostephanus truncatus Horn. Comparative Biochemistry and Physiology B 126, 425–433.CrossRefGoogle Scholar
  25. Nasiruddin M. and Mordue (Luntz) A. J. (1993) The effect of azadirachtin on the midgut histology of the locusts Schistocerca gregaria and Locusta migratoria. Tissue and Cell 25, 875–884.CrossRefGoogle Scholar
  26. Ntonifor N. N., Mueller-Harvey I., Van Emden H. E and Brown R. H. (2006) Antifeedant activities of crude seed extracts of tropical African spices against Spodoptera littoralis (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science 26, 78–85.CrossRefGoogle Scholar
  27. Pant R. and Morris I. D. (1969) Change in active phosphorylase activity and glycogen content during larval and pupal development of Philosamia ricini. Journal of Biochemistry 66, 29–31.CrossRefGoogle Scholar
  28. Papachristos D. P. and Stamopoulos D. C. (2002) Repellent, toxic and reproduction inhibitory effects of essential oil vapours on Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Journal of Stored Products Research 38, 117–128.CrossRefGoogle Scholar
  29. Rani P. V. and Jamil K. (1989) The effect of water hyacinth leaf extract on mortality, growth and metamorphosis of certain pests of stored products. Insect Science and Its Application 10, 327–332.Google Scholar
  30. Rekha M. R., Sasikiran K. and Padmaja G. (2004) Inhibitor potential of protease and a-amylase inhibitors of sweet potato and taro on the digestive enzymes of root crop storage pests. Journal of Stored Products Research 40, 461–470.CrossRefGoogle Scholar
  31. Roe J. H. (1955) Determination of sugar in blood and spinal fluid with anthrone reagent. Journal of Biological Chemistry 212, 335–338.PubMedGoogle Scholar
  32. Schmidt G. H., Rembold H., Adel A. I. and Breuer M. (1988) Effect of Melia azedarach fruit extract on juvenile hormone titer and protein content in the hemolymph of two species of noctuid lepidopteran larvae (Insecta: Lepidoptera: Noctuidae). Phy topar asitica 26, 283–291.Google Scholar
  33. Scott I. M., Jensen H., Scott J. G., Isman M. B., Arnason J. T. and Philogène B. J. R. (2003) Botanical insecticides for controlling agricultural pests: Piperamides and the Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Archives of Insect Biochemistry and Physiology 54, 212–225.CrossRefGoogle Scholar
  34. Senthil Nathan S. (2006) Effects of Melia azedarach on nutritional physiology and enzyme activities of the rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Pesticide Biochemistry and Physiology 84, 98–108.CrossRefGoogle Scholar
  35. Senthil Nathan S. and Sehoon K. (2006) Effects of Melia azedarach L. extract on the teak defoliator Hyblaea puera Cramer (Lepidoptera: Hyblaeidae). Crop Protection 25, 287–291.CrossRefGoogle Scholar
  36. Shaaya E., Kostjukovski M., Eilberg J. and Sukprakarn C. (1997) Plant oils as fumigant and contact insecticides for the control of stored-product insects. Journal of Stored Products Research 33, 7–15.CrossRefGoogle Scholar
  37. Statistica Statsoft Inc. (1997) Statistica release 5.1. Tulsa, Oklahoma.Google Scholar
  38. Strobl S., Maskos K., Wiegand G., Huber R., Gomis-Ruth E., and Glockshuber R. (1998) A novel strategy for inhibition of a-amylases: Yellow meal worm a-amylase in complex with Ragi bifunctional inhibitor at 2.5 A resolution. Structure 6, 911–921.CrossRefGoogle Scholar
  39. Terra W. R. and Ferreira C. (2005) Biochemistry of digestion, pp. 171–224. In Comprehensive Molecular Insect Science. Biochemistry and Molecular Biology (Edited by L. I. Gilbert, K. Iatrou and S. S. Gill). Vol. 4. Elsevier Inc., Amsterdam.CrossRefGoogle Scholar
  40. Valencia A., Bustillo A. E., Ossa G. E. and Chrispeels M. J. (2000) a-amylases of the coffee berry borer (Hypothe-nemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochemistry and Molecular Biology 30, 207–213.CrossRefGoogle Scholar
  41. Van Handel E. (1965) Micro-separation of glycogen, sugars and lipids. Analytical Biochemistry 11, 266–271.CrossRefGoogle Scholar
  42. Wang J., Zhu E., Zhou X. M., Niu C. Y and Lei C. L. (2006) Repellent and fumigant activity of essential oil from Artemisia vulgaris to Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Stored Products Research 42, 339–347.CrossRefGoogle Scholar
  43. Yang R. Z. and Tangs C. S. (1988) Plants used for pest control in China: A literature review. Economic Botany 42, 376–406.CrossRefGoogle Scholar
  44. Zettler J. L. (1991) Pesticide resistance in Tribolium castaneum and Tribolium confusum (Coleoptera: Teneb-rionidae) from flour mills in the United States. Journal of Economic Entomology 84, 763–767.CrossRefGoogle Scholar
  45. Zettler J. L. and Cuperus G. W. (1990) Pesticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) in wheat. Journal of Economic Entomology 83, 1677–1681.CrossRefGoogle Scholar
  46. Ziegler J. R. (1976) Evolution of the migration response: Emigration by Tribolium and the influence of age. Evolution 30, 579–592.CrossRefGoogle Scholar
  47. Zöllner N. and Kirsch K. (1962) The quantitative determination of lipids (micromethod) by means of the sulphosphovanillin reaction common to many natural lipids (all known plasma lipids). Zeitschrift die Gesampte Expérimentale Medizin 135, 545–561.CrossRefGoogle Scholar

Copyright information

© ICIPE 2008

Authors and Affiliations

  1. 1.Laboratoire de Biologie Appliquée et Sciences de l’Environnement, Faculté des Sciences et Techniques, Centre des Etudes Environnementales Méditerranéennes (CEEM)Université Abdelmalek EssaâdiTangierMorocco

Personalised recommendations