International Journal of Tropical Insect Science

, Volume 10, Issue 5, pp 661–675 | Cite as

Factors Influencing the Development of Brugia Pahangi Microfilariae in Culex Quinquefasciatus and Aedes Aegypti Mosquitoes

  • Lucy W. Irungu
Research Article


Culex quinquefasciatus (Wiedemann) mosquitoes, which are refractory to Brugia pahangi (Buckley and Edeson) microfilariae, were fed simultaneously on Wuchereria bancrofti (Cobbold) and B. pahangi microfilariae. A selected stock of Aedes aegypti (L) which is susceptible to both of these filariae was used as a control. The exsheathment and migration rates of B. pahangi in C. quinquefasciatus increased significantly as compared to those of B. pahangi when given as a feed by itself. These two processes did not show any trend with time. On dissection, 12 and 14 days postinfection, 27% of C. quinquefasciatus were found to be infected with an average of two larvae per mosquito. Of the total number of larvae found 78% were W. bancrofti while 22% were B. pahangi.

Feeding C. quinquefasciatus on in vitro exsheathed B. pahangi microfilariae suspended in serum did not increase the rate of migration, whereas 71-100% of Ae. aegypti became infected with a mean of 3.5 larvae per mosquito.

Inoculation of C. quinquefasciatus mosquitoes into the thorax and abdomen with exsheathed B. pahangi did not increase their infection rate, whereas in Ae. aegypti 67-82% became infected.


Culex quinquefasciatus (Wiedemann), ces moustiques qui sont refractaires aux microfilaires du Brugia pahangi ont été nourris simultanément avec des microfilaires du Wuchereria bancrofti (Cobbold) et du B. pahangi. Pour contrôler, une ligne selectionnée d’Aedes aegypti, sensibles à ces deux filiaires, a été utilisee. Les taux de mue et de migration du B. pahangi dans les C. quinquefasciatus ont augmenté d’une maniere plus significative que ceux des B. pahangi alimentés en Wuchereria bancrofti. Ces deux procédés n’ont rien démontré. Lors de la dissection des jours 12 et 14 postinfection, 27% des C. quinquefasciatus ont été infectés avec une moyenne de 2 larves par moustiques. 78% du nombre total des larves trouvées furent des W. bancrofti tandis que 22% étaient des B. pahangi.

Alimenter in vitro les C. quinquefasciatus avec les microfiiaires découverts, baignant dans le serum n’a pas augmenté le taux de migration alors que 71 % des Ae. aegypti devinrent infectés à raison de 3.5 larves par moustique.

L’innoculation de B. pahangi mués dans le thorax et abdomen des moustiques C. quinquefasciatus, n’a pas augmenté leur taux d’infection, tandis que dans l’Ae. aegypti 67.82% devinrent infectés.

Key Words

Mosquitoes Culex quinquefasciatus Aedes aegypti microfilariae Brugia pahangi Wuchereria bancrofti exsheathment migration inoculation serum 

Mots Clèfs

Moustiques Culex quinquefasciatus Aedes aegypti microfilariae Brugia pahangi Wuchereria bancrofti mue migration innoculation serum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Curtis C.F. and Graves P.M. (1983) Genetic variation in the ability of insects to transmit filariae, trypanosomes and malarial parasites. From: Current Topics in Vector Research (Edited by Kerry F. Harris) Vol 1.Google Scholar
  2. Desowitz R.S. and Chellapah W.T. (1962) The transmission of Brugia spp. through Culex pipiensfatigans: The effect of age and prior non-infective bloodmeals on the infection rate. Trans. R. Soc. trop. Med. Hyg. 36, 121–125.CrossRefGoogle Scholar
  3. Devaney E. (1979) The cultivation in vitro of the first stage larvae of Brugia pahangi and other filarial worms. Ph.D. Thesis, University of Liverpool.Google Scholar
  4. Devaney E. and Howells R.E. (1979) The exsheathment of Brugia pahangi microfilariae under controlled conditions in vitro. Ann. trop. Med. Parasitol. 73, 227–233.CrossRefGoogle Scholar
  5. Ewert A. (1965a) Comparative migration of microfilariae and development of B. pahangi in various mosquitoes. Am. J. trop. Med. Hyg. 14, 254–259.CrossRefGoogle Scholar
  6. Ewert A. (1965b) Exsheathment of the microfilariae of Brugia pahangi in susceptible and refractory mosquitoes. Am. J. trop. Med. Hyg. 14, 260–262.CrossRefGoogle Scholar
  7. Furman A. and Ash R. (1983) Analysis of Brugia pahangi microfilariae surface carbohydrates: Comparison of the binding of a panel of fluoresceinated lectins to mature in vivo derived microfilariae. Acta tropica 40, 45–51.PubMedGoogle Scholar
  8. Hayes R.O. (1953) Determination of physiological saline solution for Aedes aegypti (L). J. Econ. Entomol. 46, 624–627.CrossRefGoogle Scholar
  9. Irungu L.W. (1984) Studies on factors influencing the establishment and development of filaria in mosquitoes. Ph.D. Thesis, University of Liverpool.Google Scholar
  10. Laurence B.R. and Pester F.R.N. (1961a) The behaviour and development of Brugia patei (Buckley, Nelson and Heisch, 1958) in a mosquito host Mansonia uniformis (Theobald). J. Helminthol. 35, 285–300.CrossRefGoogle Scholar
  11. Laurence B.R. and Pester F.R.N. (1961b) The ability of Anopheles gambiae Giles to transmit Brugia patei. J. trop. Med. Hyg. 64, 169–171.Google Scholar
  12. Macdonald W.W. (1963) Further studies on a strain of Ae. aegypti susceptible to infection with sub-periodic Brugia malayi. Ann. trop. Med. Parasitol. 57, 452–459.CrossRefGoogle Scholar
  13. Macdonald W.W. and Ramachandran C.P. (1965) The influence of the gene fm (filarial susceptibility, Brugia malayi) on the susceptibility of Ae. aegypti to seven strains of Brugia Wuchereria and Dirofilaria. Ann. trop. Med. Parasitol. 59, 64–73.CrossRefGoogle Scholar
  14. Macdonald W.W. (1967) The influence of genetic and other factors on vector susceptibility to parasities. In Genetics of Insect Vectors of Disease (Edited by Wright J.W. and Pal R.) Elsevier, Amsterdam.Google Scholar
  15. Maudlin I. (1983) Host serum factors and the maturation of T. congolense infections in G. m. morsitans From: Tsetse Research Laboratory Annual Report pp. 37–38.Google Scholar
  16. Meek S.R. and Macdonald W.W. (1982) Studies on the inheritance of susceptibility of infection with Brugia pahangi and Wuchereria bancrofti in the Aedes scutellaris group of mosquitoes. Ann. trop. Med. Parasitol. 76, 347–354.CrossRefGoogle Scholar
  17. Minjas J.N. and Townson H. (1980) The successful cryopreservation of the microfilariae with hydroxyethyl starch as cryoprotectant. Ann. trop. Med. Parasitol. 74, 571–573.CrossRefGoogle Scholar
  18. Minjas J.N. (1981) The cryopreservation of microfilariae (Nematoda: Filariodea) and its application to the investigation of susceptibility of Culex quinquefasciatus to Wuchereria bancrofti. Ph.D. Thesis, University of Liverpool.Google Scholar
  19. Nelson G.S. (1962) Observations of the development of Setaria labiatopapillosa using new techniques for infecting Aedes aegypti with this nematode. J. Helminthol. 36, 281–296.CrossRefGoogle Scholar
  20. Obiamiwe B.A. (1977c) The effect of anticoagulant on the early migration of Brugia pahangi microfilariae in Culex pipiens susceptible or refractory to B. pahangi. Ann. Trop. Med. Parasitol. 71, 371–374.CrossRefGoogle Scholar
  21. Obiamiwe B. A. (1977d) Susceptibility of Brugia pahangi to geographical strains of Culex pipiens fatigans. Ann. trop. Med. Parasitol. 71, 367–370.CrossRefGoogle Scholar
  22. Owen R.R. (1978a) The exsheathment and migration of Brugia pahangi microfilariae in mosquitoes of the Aedes scutellaris species complex. Ann. trop. Med. Parasitol. 71, 567–571.CrossRefGoogle Scholar
  23. Ramachandran C.P., Jimenez F. and Edeson J.F.B. (1961) Early stages in the development of Brugia malayi in different species of mosquitoes. Trans. R. Soc. trop. Med. Hyg. 55, 2.Google Scholar
  24. Ramachandran C.P. (1966) Biological aspects in the transmission of Brugia malayi by Ae. aegypti in the laboratory. J. Med. Entomol. 3, 239–252.CrossRefGoogle Scholar
  25. Ramachandran C.P. and Zaini M.A. (1967) Studies on the transmission of sub-periodic Brugia malayi by Aedes (Finlaya) togoi in the laboratory. 1. The uptake and migration of microfilariae. Med. J. Malaya. 21, 136–155.Google Scholar
  26. Rosenberg R. and Koontz L. (1984) Plasmodium gallinaceum: Erythrocyte factor essential for zygote infection of Aedes aegypti. Exp. Parasitol. 57, 158–164.CrossRefGoogle Scholar
  27. Sasa M. (1976) Human Filariasis — A Global Survey of Epidemiology and Control. University Park Press.Google Scholar
  28. Sulaiman I. and Townson H. (1980) The genetic basis of susceptibility to infection with Dirofilaria immitis in Ae. aegypti. Ann. trop. Med. Parasitol. 74, 635–646.CrossRefGoogle Scholar
  29. Townson H. (1975) A device for inoculating mosquitoes with larval filariae. Trans. R. Soc. trop. Med. Hyg. 69, 12–13.Google Scholar
  30. Wade J.O. (1976) A new design of membrane feeder incorporating an electrical blood stirring device. Ann. trop. Med. Parasitol. 70, 113–120.CrossRefGoogle Scholar
  31. Ziekle E. and Kuhlow F. (1977) On the inheritance of susceptibility for infection with Wuchereria bancrofti in Culex pipiens fatigans. Tropen Med. Parasitol. 23, 68–70.Google Scholar

Copyright information

© ICIPE 1989

Authors and Affiliations

  • Lucy W. Irungu
    • 1
  1. 1.Department of ZoologyUniversity of NairobiNairobiKenya

Personalised recommendations