Advertisement

Properties of a Factor in Eland Plasma that Inhibits Transformation of Bloodstream-form Trypanosoma Brucei Brucei

  • E. K. Nguu
  • E. O. OsirEmail author
Research Article

Abstract

Fresh plasma from the African eland, Taurotragus oryx, contains a factor that inhibits the transformation of bloodstream-form Trypanosma brucei brucei into procyclic (midgut) forms. Heating of the plasma at 42, 50 and 60 °C for 30 min resulted in a 20, 38 and 40% loss of inhibitor activity respectively, whereas only negligible loss occurred below 42 °C. Similarly, one and four freeze-thawing cycles resulted in 32 and 60% loss of activity respectively. Inactivation of the inhibitor activity, which occurred rapidly during storage (for example, 80% loss after 7 days at −20 °C) could not be stopped by the addition of various protease inhibitors or lyophilisation of the plasma. Treatment of plasma with pronase (1 mg/ml for 2 h) completely abrogated the inhibitor activity, whereas trypsinisation had only a partial effect. Ammonium sulphate fractionation of fresh plasma showed that the inhibitor was insoluble above 50% salt. When the plasma was fractionated by anion-exchange chromatography, the inhibitory activity was recovered in the bound fractions. Efforts to purify the inhibitor were unsuccessful due to the rapid loss of activity under all conditions tested. It is concluded that the low capacity of eland blood to support transformation of bloodstream trypanosomes is due to an inhibitor present in the plasma fraction.

Key Words

African eland plasma trypanosomes transformation inhibitor 

Résumé

Le plasma frais de l’élan africain, Taurotragus oryx, contient un facteur qui inhibe la transformation des formes sanguines de Trypanosoma brucei brucei en formes procycliques (intestinales). Le chauffage du plasma à 42, 50 et 60 °C pendant 30 min provoque 20, 38 et 40% de perte de l’activité inhibitrice respectivement, alors que la perte est négligeable en dessous de 42 °C. De même, un et quatre cycles de congélation-décongélation provoquent respectivement 32 et 60% de perte d’activité. L’inactivation de l’activité inhibitrice, qui intervient rapidement pendant le stockage (par exemple, 80% de perte après 7 jours à −20 °C) ne peut pas être arrêtée par l’addition de différents inhibiteurs de protéases ou la lyophilisation du plasma. Le traitement du plasma avec de la pronase (lmg/ml pendant 2 heures) supprime complètement l’activité inhibitrice, alors que la trypsinisation a seulement une effet partiel. Le fractionnement par le sulphate d’ammonium du plasma frais indique que l’inhibiteur est insoluble au dessus de 50% de sel. Quand le plasma est fractionné en Chromatographie par échange d’anions, l’activité inhibitrice est retrouvée dans les fractions liées. Les tentatives de purification de l’inhibiteur ont échoué à cause de la perte rapide d’activité pour toutes les conditions testées. On en conclut que la faible capacité du sang d’élan à favoriser la transformation des formes sanguines du trypanosome est dû à un inhibiteur présent dans la fraction plasmique.

Mots Clés

éland Africain plasma trypanosomes inhibiteur de la transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheeseman M. T. and Gooding R. H. (1985) Proteolytic enzymes from tsetse flies, Glossina morsitans and Glossina palpalis (Diptera:Glossinidae). Insect Biochem. 15, 677–680.CrossRefGoogle Scholar
  2. Ghiotto V., Brun R., Jenni L. and Hecker H. (1979) Tnypanosoma brucei: morphometric changes and loss of infectivity during transformation of bloodstream forms to procyclic culture forms in vitro. Exp. Parasitol. 48, 447–456.CrossRefGoogle Scholar
  3. Gillet M. P. T. and Owen J. S. (1992) Comparison of the cytolytic effects in vitro on Trypanosoma brucei brucei of plasma, high density lipoproteins and apolipoprotein A-I from hosts both susceptible (cattle and sheep) and resistant (human and baboon) to infection, J. Lipid Res. 33, 513–523.Google Scholar
  4. Gingrich J. B., Ward R. A., Macken L. M. and Schoenbechler J. M. (1982) Trypanosoma brucei bricei rhodesiense (Trypanosomatidae): Factors influencing infection rates of a recent human isolate in the tsetse Glossina morsitans (Diptera: Glossinidae). J. Med. Entornol. 19, 268–274.CrossRefGoogle Scholar
  5. Hajduk S. L., Moore D. R., Vasudevacharya J., Siqueira H., Torri A. F., Tytler E. M. and Esko J. D. (1989) Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. J. Biol. Chem. 264, 5210–5217.PubMedGoogle Scholar
  6. Huang C. T. (1971) Vertebrate serum inhibitors of Aedcs aegypti trypsin. Insect Biochem. 1, 27–38.CrossRefGoogle Scholar
  7. Hudson K. M. and Terry R. J. (1970) Natural immunity of the cotton rat to T. vivax. Trans. Roy. Soc. Trop. Med. Hyg. 64, 170–171.CrossRefGoogle Scholar
  8. [ILRAD] International Laboratory for Research in Animal Diseases (1982) Annual Research Report.Google Scholar
  9. Imbuga M. O., Osir E. O., Labongo V. L., Darji N. and Otieno L. H. (1992) Studies on tsetse midgut factors that induce differentiation of bloodstream Trypanosoma brucei brucei in vitro. Parasitai. Res. 78, 10–15.CrossRefGoogle Scholar
  10. Ingram G. A. and Molyneux D. H. (1988) Sugar specificities of anti-human A. B. O. (H) blood group erythrocyte agglutinins (lectins) and haemolytic activity in the haemolymph and gut extracts of three Glossina species. Insect Biochem. 18, 269–279.CrossRefGoogle Scholar
  11. Llyod L. L. and Johnson W. B. (1924) The trypanosome infections of tsetse flies in Northern Nigeria and a new method of estimation. Bull. Entomol. Res. 14, 265–288.Google Scholar
  12. Lorenz P., James R. W., Owen J. S. and Betschart B. (1994) Heterogeneity in the properties of the trypanolytic factor in normal human serum. Mol. Biochem. Parasitol. 64, 153–164.CrossRefGoogle Scholar
  13. Maudlin I. (1991) Transmission of African trypanosomiasis: interaction among tsetse immune system, symbionts and parasites. Adv. Disease Vector Res. 7, 117–148.CrossRefGoogle Scholar
  14. Maudlin I., Kabayo J. P., Flood M. E. T. and Evans D. A. (1984) Serum factors and the maturation of Trypanosoma congolaise infections in Glossina morsitans. Parasitenkd. 70, 11–19.CrossRefGoogle Scholar
  15. Mihok S., Olubayo R. O. and Wesonga D. F. (1991) Infection rates in Glossina morsitans morsitans fed on Waterbuck (Kobns defassa) and Boran cattle (Bos indiens) infected with Trypanosoma congolense. Acta Trop. (Basel) 45, 185–191.CrossRefGoogle Scholar
  16. Mihok S., Olubayo R. O., Darji N. and Zweygarth E. (1993) The influence of host blood on infection rates in Glossina morsitans sspp. infected with Trypanosoma congolense, T. brucei and T. simiae. Parasitol. 107, 41–48.CrossRefGoogle Scholar
  17. Moloo S. K. (1981) Effects of maintaining Glossina morsitans morsitans on different hosts upon the vectors subsequent infection rates with pathogenic trypanosomes. Acta Trop. (Basel) 38, 125–126.PubMedGoogle Scholar
  18. Moloo S. K. (1984) Trypanosoma vivax, T. congolense or T. brucei infection rates in Glossina morsitans when maintained in vitro on the blood of goat or calf. Acta Trop. (Basel) 41, 45–49.PubMedGoogle Scholar
  19. Molyneux D. H. and Ashford R. W. (1983) The Biology of Trypanosoma and Leishmania Parasites of Man and Domestic Animals. Taylor and Francis Ltd., London. pp 294.Google Scholar
  20. Moore R. D., Smith A., Hager K. M., Walod R., Esko J. D. and Hajduk S. L. (1995) Developmentally regulated sensitivity of Trypanosoma brucei brucei to the cytotoxic effects of human high-density lipoprotein. Exp. Parasitol. 81, 216–226.CrossRefGoogle Scholar
  21. Mulla A. F. and Rickman L. R. (1988) Evidence for an innate trypanocidal factor in the serum of non-immune African waterbuck (Kobtts ellipiprymmis). Trans. Roy. Soc. Trop. Med. Hyg. 82, 97–98.CrossRefGoogle Scholar
  22. Nguu E. K., Osir E. O., Imbuga M. O. and Olembo N. K. (1996) The effect of host blood in the in vitro transformation of bloodstream trypanosomes by homogenates of tsetse midgut. Med. Vet. Entotnol. 10, 317–322. i]Olubayo R. O. (1991) Expression of trypanotolerance by African wild Bovidae with special reference to the buffalo Syncertts caffer. Ph.D. Thesis, UtrechtCrossRefGoogle Scholar
  23. Olubayo R.O. and Brun R. (1992) The influence of buffalo and bovine serum on transformation of Trypanosoma congolense from metacyclic forms to bloodstream forms in vitro. Trop. Med. Parasitol. 43, 102–105.PubMedGoogle Scholar
  24. Otieno L. H., Darji N., Onyango P. and Mpanga E. (1983) Some observations on factors associated with the development of Trypanosoma brucei brucei infections in Glossina morsitans morsitatts. Actn Trop. (Basel) 40, 113–120.Google Scholar
  25. Reduth D., Grootenhuis J. G., Olubayo R. O., Muranjan M., Otieno-Omondi F. P., Morgan G. A., Brun R., Williams D. J. L. and Black S. J. (1994) African buffalo serum contains novel trypanocidal protein. J. Ettk. Microbiol. 41, 95–103.Google Scholar
  26. Rifkin M. R. (1978) Trypanosoma brucei: some properties of the cytotoxic reaction induced by normal human serum. Exp. Parasitol. 46, 189–206.CrossRefGoogle Scholar
  27. Seed J.R. and Sechelski J.B. (1989) Mechanism of long slender (L.S) to short stumpy (S.S) transformation in the African trypanosomes. J. Protozool. 36, 572–577.CrossRefGoogle Scholar
  28. Seed J. R., Sechelski J. B. and Loomis M. R. (1990) A survey for a trypanocidal factor in primate sera. J. Protozool. 37, 393–400.CrossRefGoogle Scholar
  29. Stiles J. K., Ingram G. A., Wallbanks K. R., Molyneux D. H., Maudlin I. and Welburn S. (1990) Identification of midgut trypanolysin and trypanoagglutinin in Glossina palpalis sspp. (Diptera:Glossinidae). Parasitol. 101, 369–376.CrossRefGoogle Scholar
  30. Turner C. M. R., Barry J. D. and Vickerman K. (1988) Loss of variable antigen during transformation of Trypanosoma brucei rltodesiense. Parasitol. Res. 74, 507–511.CrossRefGoogle Scholar
  31. Welburn S. C., Maudlin I. and Ellis D. S. (1989) Rate of trypanosome killing by lectins in midguts of different species and strains of Glossina. Med. Vet. Entotnol. 3, 77–82.CrossRefGoogle Scholar

Copyright information

© ICIPE 2001

Authors and Affiliations

  1. 1.Biochemistry DepartmentUniversity of NairobiNairobiKenya
  2. 2.International Centre of Insect Physiology and EcologyNairobiKenya

Personalised recommendations