Advertisement

Effects of Temperature on the Development and Fecundity of Diaperasticus Erythrocephala Olivier (Dermaptera: Forficulidae)

  • Régine ArogaEmail author
  • Daniel Coderre
Research Article

Abstract

The developmental, oviposition, and mortality rates for the polyphagous earwig Diaperasticus eryihrocephala Olivier feeding on pollen and Ephestia kuehniella Zeller eggs were measured at constant temperatures of 18, 25 and 32 °C. The developmental period for D. erythrocephala required 533 degree-days (DD) above a threshold of 6.7 °C. Egg and larval development rates increased with increasing temperature, with the shortest developmental period being recorded at 32 °C. However, egg and larval mortality and larval malformation rates were significantly higher at 32 than at 25 and 18 °C. Over a period of 60 days, females laid an average of 26.5 eggs at 25 °C and none at 18 °C. Based on the results obtained, it is concluded that of the three temperatures, 25 °C is the most suitable for the laboratory mass rearing of D. erythrocephala.

Key Words

Diaperasticus erythrocephala earwig predator temperature development fecundity biological control mass rearing 

Résumé

Les taux-de développement, d’oviposition et de mortalité de Diaperasticus eryrthrocephala Olivier nourris avec du pollen et des oeufs d’Ephestia kuehniella Zeller ont été mesurés aux températures constantes de 18, 25 et 32 °C. La période de développement requiert 533 degrés-jours (DD) au dessus d’une température seuil de développement de 6.7 °C. Les taux de développement embryonnaires et larvaires augmentent avec la température, avec une plus courte période de développement à 32 °C. Cependant, les taux de mortalité embryonnaires et larvaires et de malformations larvaires sont significativement plus élevés à 32 °C qu’à 25 et 18 °C. Sur une période de 60 jours, les femelles pondent en moyenne 26.5 oeufs à 25 °C et aucun à 18 °C. Sur la base des résultats obtenus, il est conclu que parmi les trois températures, 25 °C est la plus favorable pour la production de masse au laboratoire de D. eryrthrocephala.

Mots Clés

Diaperasticus eryrthrocephala prédateur température développement fécondité lutte biologique production de masse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abacus Concepts Inc. (1986) Statview 512tm User’s Guide. BrainPower Inc., Calabasas, CA.Google Scholar
  2. Ables J.R., Shepard M. and Holman J. R. (1976) Development of the parasitoids Spalanca endius and Muscidifurax raptor in relation to constant and variable temperature: Simulation and validation. Environ. Entomol. 5, 329–332.CrossRefGoogle Scholar
  3. Ambassa-Kiki R. (1990) Un site d’expérimentations du réseau IBSRAM à Minkoameyos, Yaoundé. IBSRAM Proc. 10, 425–440. IBSRAM, Bangkok.Google Scholar
  4. Aroga R. (1997) Dynamique des populations de foreurs du maïs et leurs ennemis naturels dans un agroécosystème maïs-arachide du centre du Cameroun. Thèse de Doctorat, Département Sciences de l’Environnement, Université du Québec à Montréal, Montréal. 112 pp.Google Scholar
  5. Bastian R. A. and Hart E. R. (1991) Temperature effect on development parameters of the mimosa webworm (Lepidoptera: Plutellidae). Environ. Entomol. 20, 1141–1148.CrossRefGoogle Scholar
  6. Beasley C. A. and Adams C. J. (1996) Field-based, degree-day model for pink bollworm (Lepidoptera: Gelechiidae) development. J. Earn. Entomol. 89, 881–890.CrossRefGoogle Scholar
  7. Boukary I. B. (1989) Etude de la biologie de Forficula senegalensis Serv. (Dermaptera: Forficulidae) dans des cultures de mil au Niger. Mémoire de Maîtrise, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal. 84 pp.Google Scholar
  8. Borror D. J., Triplehorn C. M. and Johnson N. F. (1989) An Introduction to Study of insects. 6th edition. Saunders College Publishing. Philadelphia. 875 pp.Google Scholar
  9. Campbell A., Frazer B. D., Gilbert N., Gutierrez A. P. and Mackauer M. (1974) Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431–438.CrossRefGoogle Scholar
  10. Cave R. D. and Gaylor M. J. (1988) Influence of temperature and humidity on development and survival of Telenomus rcynoldsi parasitizing Geocoris punctipes eggs. Ann. Entomol. Soc. Am. 81, 278–285.CrossRefGoogle Scholar
  11. Chapman R. F. (1969) The Insects Structure and Function. The English Universities Press Ltd. New York. 819 pp.Google Scholar
  12. Cheah C. S.-J. (1987) Temperature requirements of the chrysanthemum leaf miner, Chromatomyla syngenesiae, and its ectoparasitoid, Diglyphus isea. Entomophaga 32, 357–365.CrossRefGoogle Scholar
  13. Gagné I. (1996) Optimisation de la production de masse de Coleomegilla maculata lengi Timberlake (Coleoptera: Coccinellidae) par manipulation de la température. Mémoire de Maîtrise, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal. 84 pp.Google Scholar
  14. Gullan P. J. and Cranston P. S. (1994) The Insects: An Outline of Entomology. Chapman and Hall, London. 491 pp.Google Scholar
  15. Jones R. W. (1985) Biology of the earwigs, Doru taeniata (Dohrn) and evaluation as a predator of Spodoptera fntgiperda attacking corn and sorghum in Honduras. MSc Thesis. Graduate College of Texas A&M University. 130 pp.Google Scholar
  16. Lamb R. J. (1975) Life history and population characteristics of European earwigs Forficula auricularia L. (Dermaptera: Forficulidae) at Vancouver, British Columbia. Can. Entomol. 107, 819–824.CrossRefGoogle Scholar
  17. Lhoste J. (1941) Les stades larvaires et la division des articles antennaires chez Forficula auricularia L. (Dermaptera: Forficulidae). Bull. Soc. Entomol. France, 47, 35–37.Google Scholar
  18. Madar R. J. and Miller J. C. (1984) Developmental biology of Apanteles yakutatensis a primary parasite of Autographa californien. Ann. Entomol. Soc. Am. 76, 683–687.CrossRefGoogle Scholar
  19. Miller J. C. (1992) Temperature-dependant development in the convergent ladybeetle. Environ. Entomol. 21, 197–201.CrossRefGoogle Scholar
  20. Miller J. C. (1996) Temperature-dependant development of Meteorus communis (Hymenoptera: Braconidae), a parasitoid of the variegated cutworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 89, 877–880.CrossRefGoogle Scholar
  21. Miller J. C. and Gerth W. (1994) Temperature-dependant development of Aphidius matricariae as a parasitoid of the Russian wheat aphid. Environ. Entomol. 23, 1304–1307.CrossRefGoogle Scholar
  22. Nadgauda D. and Pitre H. (1983) Development, fecundity, and longevity of the tobacco budworm (Lepidoptera: Noctuidae) fed soybean, cotton, and artificial diet at three temperatures. Environ. Entomol. 12, 582–586.CrossRefGoogle Scholar
  23. Obrycki J. J., Tauber M. J., Tauber C. A. and Gollands B. (1987) Developmental responses of the Mexican biotype of Edovum puttleri (Hymenoptera: Eulophidae) to temperature and photoperiod. Environ. Entomol. 16, 1319–1323.CrossRefGoogle Scholar
  24. Ricklefs R. E. (1979) Ecology. Chiron Press Incorporated, New York and Concord. 966 pp.Google Scholar
  25. Seshu Reddy K. V. (1983) Studies on the stem-borer complex of sorghum in Kenya. Insect Sci. Applic. 4, 3–10.Google Scholar
  26. Shanower T. G., Schulthess F. and Bosque-Perez N. (1993) Development and fecundity of Sesamia calamistis (Lepidoptera: Noctuidae) and Eldana saccharina (Lepidoptera: Pyralidae). Bull. Ent. Res. 83, 237–243.CrossRefGoogle Scholar
  27. Zeiss M. R., Koehler K. J. and Pedigo L. P. (1996) Degree-day requirements for development of the bean leaf beetle (Coleoptera: Chrysomelidae) under two rearing regimes. J. Econ. Entomol. 89, 111–118.CrossRefGoogle Scholar

Copyright information

© ICIPE 2001

Authors and Affiliations

  1. 1.Institut de Recherche Agricole pour le DéveloppementYaoundéCameroun
  2. 2.Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalCanada

Personalised recommendations