Toxicity of 1,8-Cineole Towards Three Species of Stored Product Coleopterans

  • Kishan Kumar Aggarwal
  • Arun Kumar TripathiEmail author
  • Veena Prajapati
  • Sushil Kumar
Research Article


1,8-cineole, one of the components of the essential oil of Artemisia annwa, was evaluated for repellency and toxicity against three stored product coleopterans—Callosobruchiis maculatus F. (Coleoptera: Bruchidae), Rhyzopertha dominica F. (Coleoptera: Bostrychidae) and Sitopliilus oryzae L. (Coleoptera: Curculionidae). It was found to be moderately repellent to all three species, with a mean repellency in the range of 65–74% at the highest dose tested (4.0 μl/ml) within 1h. A contact toxicity assay revealed that direct topical application was more effective than using impregnated filter paper. The compound was more effective as a fumigant and gave 93–100% mortality against all the three pest species at the dose of 1.0 μl/l air under empty jar conditions as compared to treatment of jars filled with grain (11–26% mortality). The lethal dose and lethal concentration required to kill 50% of the beetles (LD50 and LC50 respectively) varied with the toxicity assay method. LD50 values of 0.03, 0.04 and 0.04 μl/insect against C. maculatus, R. dominica and S. oryzae respectively were found in the topical application assay while the LC50 in the fumigant assay was 0.28, 0.33 and 0.46 μl/l against C. maculatus, R. dominica and S. oryzae respectively.

Key Words

1,8-cineole Coleoptera Callosobruchus maculatus Rhyzopertha dominica Sitophilus oryzae toxicity repellency Artemisia annua 


L’un des composés de l’huile essentielle d’Artemisia annua, le 1,8-cineole, a été évalué pour sa répulsion et sa toxicité vis à vis de trois coléoptères des denrées stockées, Callosobrnchus maculatus F. (Coleoptera: Bruchidae), Rhyzoperta dominica F. (Coleoptera: Bostrychidae) et Sitopliilus orizae L. (Coleoptera: Curculionidae). Il s’est avéré être modérément répulsif pour les 3 espèces, avec une répulsion moyenne de 65–74% à la plus forte dose testée (4.0 ml/ml) pendant 1 heure. Un essai de toxicité de contact indique qu’une application locale directe est plus efficace que l’utilisation d’un papier filtre imprégné. Le composé est plus efficace en fumigation et provoque 93–100% de mortalité chez les trois espèces de ravageurs à la dose de 1.0 ml/l d’air dans un pot vide par rapport à un pot rempli de grains (11–26% de mortalité). La dose létale et la concentration létale requises pour tuer 50% des scarabées (LD50 et LC50 respectivement) varient avec le type d’essai de toxicité. Des valeurs de LD50 de 0.03, 0.04 et 0.04 ml/insecte pour C. maculatus, R. dominica et S. oryzae respectivement ont été trouvées dans l’essai avec une application locale alors que la LC50 dans l’essai de fumigation était respectivement de 0.28, 0.33 et 0.46ml/l pour C. maculatus, R. dominica et S. oryzae.

Mots Clés

1,8-cineole Coleoptera Callosobruchus maculatus Rhyzoperta dominica Sitophilus oryzae toxicité répulsion Artemisia annua 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abott W. S. (1925) A method for computing the effectiveness of an insecticide. J. Econ. Ent. 18, 265–267.CrossRefGoogle Scholar
  2. Finney D. J. (1971) Probit Analysis. Cambridge University Press, London. 333 pp.Google Scholar
  3. Ganapathi K. (1937) Biogenesis of terpenoids. Curr. Sci. 6, 19–21.Google Scholar
  4. Gbolade A. A. and Adebayo T. A. (1993) Fumigant effects of some volatile oils on fecundity and adult emergence of Callosobrucints maculatus F. Insect Sci. Applic. 14, 631–636.Google Scholar
  5. Jacobion M. and Halber L. (1947), p. 83. In The Chemistry of Organic Medicinal Products (Edited by G. L. Jenkins et al.). Chapman and Hall Ltd., New York.Google Scholar
  6. Xu Hang-Hong, S. F. Chiù, Jiang F. Y. and Huang G. W. (1993) Experiments on the use of essential oils against stored prod uct insects in a storehouse. J. South China Agric. Univ. 14, 42–47.Google Scholar
  7. McDonald L. L., Guy R. H. and Speirs R. D. (1970) Preliminary evaluation of new candidate materials as toxicants, repellents and attractants against stored product insects —1. Marketing Research Report No. 882. Agricultural Research Service, US Department of Agriculture, Washington D.C. 8 pp.Google Scholar
  8. Metcalf R. L. (1980) Changing role of insecticides in crop protection. Annu. Rev. Entomol. 25, 219–256.CrossRefGoogle Scholar
  9. Obeng-Ofori D., Adler C. and Reichmuth C.C. (1997) Toxicity and repellency of 1,8-cineole, eugenol and camphor against stored product insects. Mitteil. Deuts. Gesells. Allg. Ange. Entomol. 11, 259–264.Google Scholar
  10. Perkin J. H. (1982) Insects, Experts and the Insecticide Crisis. Plenum Press, New York.CrossRefGoogle Scholar
  11. Prates H. T., Santos J. P., Waquil J. M., Fabris J. D., Olivera A. B. and Foster J.E. (1998) Insecticidal activities of monoterpenes against Rhyzopertha dominica (F) and T. castaneum (Herbst), J. Stored Prod. Res. 34, 243–249.CrossRefGoogle Scholar
  12. Rao R. J., Kumar K. M., Singh S. and Subrahmanyam B. (1999) Effect of Artemisia annua oil on development and reproduction of Dysdercus koemingii (F.) (Hemiptera: Pyrrhocoridae). J. Appl. Entomol. 123, 315–318.CrossRefGoogle Scholar
  13. SAS Institute (1988) SAS/STAT User’s Guide, Statistics, version 6.03. SAS Institute, Cary, NC.Google Scholar
  14. Shaaya E., Ravid V., Paster N., Juven B., Zisman U. and Pissarew V. (1991) Fumigant toxicity of essential oils against four major stored product insects. J. Chem. Ecol. 17, 499–504.CrossRefGoogle Scholar
  15. Silver P. (1994) Alternatives to methyl bromide sought. Pestio. News 24, 12–27.Google Scholar
  16. SPSS (1999) SPSS for Windows, version 9.01. SPSS, Chicago, IL.Google Scholar
  17. Talukder F. A. and Howse P. E. (1994) Repellent, toxic and food protectant effects of pithraj, Aphanamixis polystachya extract against pulse beetle, Callosobntchus chinensis in storage. J. Chem. Ecol. 4, 899–908.CrossRefGoogle Scholar
  18. Tripathi A. K., Prajapati V., Gupta R. and Kumar S. (1999) Herbal materials for the insect-pest management in stored grains under tropical conditions. J. Med. Arom. Plant Sci. 21, 408–430.Google Scholar
  19. Tripathi A. K., Prajapati V., Aggarwal K. K., Khanuja S. P. S. and Kumar S. (2000a) Repellency and toxicity of oil from Artemisia annua to certain stored product beetles. J. Econ. Ent. 93, 43–47.CrossRefGoogle Scholar
  20. Tripathi A. K., Prajapati V., Aggarwal K. K. and Kumar S. (2000b) Effect of volatile oil constituents of Mcntha species against the stored grain pests, Callosobruchus maculatxis and Tribolium castaneum. J. Mcd. Arom. Plant Sci. 22/1B, 549–556.Google Scholar
  21. Wilkins R. M. and Rajendran C. (1994) Interaction of chlordimiform with malathion in resistant and susceptible Tribolium castaneum, pp. 443–448. In Proceedings of the Brighton Crop Protection Conference, Pests and Disease, Vol. 1.Google Scholar
  22. Zettler J. L. and Cuperus G. W. (1990) Pesticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) in wheat. J. Econ. Ent. 83, 1677–1681.CrossRefGoogle Scholar
  23. Zettler J. L. and Keever D. W. (1994) Phosphine resistance in cigarette beetle (Coleoptera: Anobidae) associated with tobacco storage in the south eastern United States. J. Econ. Ent. 87, 546–550.CrossRefGoogle Scholar

Copyright information

© ICIPE 2001

Authors and Affiliations

  • Kishan Kumar Aggarwal
    • 1
  • Arun Kumar Tripathi
    • 2
    Email author
  • Veena Prajapati
    • 2
  • Sushil Kumar
    • 2
  1. 1.Chemical Engineering DivisionCentral Institute of Medicinal and Aromatic PlantsLucknowIndia
  2. 2.Bioprospection Group Genetic Resources and Biotechnology Division, Central Institute of Medicinal and Aromatic PlantsP. O. CIMAPLucknowIndia

Personalised recommendations