Advertisement

Influence of Helicoverpa armigera (Hübner) Diet on Its Parasitoid Campoletis chlorideae Uchida

  • K. Murugan
  • N. Senthil Kumar
  • D. Jeyabalan
  • S. Senthil Nathan
  • S. Sivaramakrishnan
  • M. Swamiappan
Research Article

Abstract

A study was undertaken to test the hypothesis that the quality of host plant parts determines the nutritional quality of herbivorous insects feeding on it to their parasitoids. A Gossypium hirsutum-Helicoverpa armigera-Campoletis chlorideae tritrophic system was evaluated. The superior nutritional quality of bolls and young leaves of Gossypium hirsutum (MCU-5 variety) contributes to more efficient feeding, growth and reproduction of the bollworm, Helicoverpa armigera (Hübner) and better survival of its larval parasitoid, Campoletis chlorideae Uchida. Longer total developmental duration and decrease in adult longevity were observed in H. armigera reared on senescent leaves than in those reared on bolls. Consumption, growth rate and efficiency measures were significantly lower in parasitised H. armigera larvae than in unparasitised larvae. Percentage parasitism was highest (84.1%) in H. armigera fed on bolls. The parasitoid C. chlorideae displayed shorter developmental duration and improved survival on H. armigera fed on bolls.

Key Words

Campoletis chlorideae Gossypium hirsutum Helicoverpa armigera host plant chemicals parasitisation tritrophic interactions 

Résumé

Une étude a été conduite pour vérifier l’hypothèse selon laquelle la qualité de différentes parties de la plante nourricière déterminent la qualité nutritionnelle des insectes herbivores qui s’en nourrissent ainsi que celle de leurs parasitoïdes. Un complexe trophique Gossypium hirsutum-Helicoverpa armigera-Campoletis chlorideae a été évalué. La qualité nutritionnelle supérieure des capsules et jeunes feuilles de G. hirsutum (var. MCU-5) contribue à une meilleure alimentation, une meilleure croissance et à la reproduction du ver rose, Helicoverpa armigera (Hübner) ainsi qu’à une meilleure survie de son parasitoïde larvaire, Campoletis chlorideae Uchida. La durée totale de développement la plus longue et la réduction de la longévité chez les adultes ont été notés, une fois que H. armigera était élevé sur les feuilles sénescentes, en comparaison des adultes élevés sur les capsules. La consommation, le taux de croissance et la performance étaient plus bas chez les larves parasitées. Le pourcentage de parasitisme était plus élevé (84,1%), chez les larves de H. armigera nourries sur les capsules. Une fois l’insecte nourri sur les capsules, son parasitoïde C. chlorideae montrait une durée plus courte de développement et une survie plus améliorée.

Mots Clés

Campoletis chlorideae Gossyphim hirsutum Helicoverpa armigera substances chimiques de la plante hôte parasitisme interactions tritrophiques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atalay D., Cherrad M. and Bouard J. (1973) Mise en evidence de plusiers acides gras dans les sarments aoutes de Vitis vinifera L. var ugni blanc. C.R. Acad. Sci., Serie, D. 277, 309–311.Google Scholar
  2. Barbosa P., Saunders J. A., Kemper J., Trumble R., Olechno J. and Martinat P. (1986) Plant allelochemicals and insect parasitoids: Effect of nicotine on Cotesia congregata and Hyposoter annulipes. J. Chem. Ecol. 12, 1319–1328.CrossRefGoogle Scholar
  3. Bernays E. A. (1981) Plant tannins and insect herbivores—An appraisal. Ecol. Entomol. 6, 353–360.CrossRefGoogle Scholar
  4. Bernays E. A. and Chapman R. F. (1978) Plant chemistry and acridid feeding behaviour, p. 15. In Biochemical Aspects of Plant and Animal Co-evolution (Edited by J. B. Harborne). Academic Press, New York.Google Scholar
  5. Bernays E. A. and Woodhead S. (1984) The need for high level of phenylalanine in the diet of Schistocerca gregaria nymph. J. Insect Physiol. 30, 489–493.CrossRefGoogle Scholar
  6. Bloem K. A. and Duffey S. S. (1990) Effect of protein type and quantity on growth and development of larval Heliothis zea and Spodoptera exigua and the endoparasitoid Hyposoter exiguae. Entomol. Exp. Appl. 54, 141–148.CrossRefGoogle Scholar
  7. Broadway R. M. and Duffey S. S. (1986) The effect of dietary protein on the growth and digestive physiology of larvae of Heliothis zea and S. exigua. J. Insect Physiol. 32, 673–680.CrossRefGoogle Scholar
  8. Campbell B. C. and Duffey S. S. (1979) Tomatine and parasitoid wasps: Potential incompatibility of plant antibiosis with biological control. Science 205, 700–702.CrossRefGoogle Scholar
  9. Dadd H. (1985) Nutrition: Organisms, pp. 313–390. In Comprehensive Insect Physiology, Biochemistry and Pharmacology Vol. 4 (Edited by G. A. Kerkut and L. I. Gilbert). Pergamon Press, Oxford.CrossRefGoogle Scholar
  10. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A. and Smith F. (1958) Calorimetric determination of sugars and related substances. Ann. Chem. Warsaw 28, 351–356.Google Scholar
  11. Duodu Y. A. and Antoh F. F. (1984) Efforts of parasitism by Apanteles sagax (Hymenoptera: Braconidae) on growth, food consumption and food utilisation in Sylepta derogata larvae (Lepidoptera: Pyralidae). Entomophaga 29, 63–71.CrossRefGoogle Scholar
  12. Folch J., Less M. and Sloane-Stanley G. H. (1957) A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  13. Gange A. C. and Brown V. K. (1989) Effects of root herbivory by an insect on a foliar-feeding species, mediated through changes in the host plant. Oecologia 81, 38–42.CrossRefGoogle Scholar
  14. Jeyabalan D. and Murugan K. (1996) Impact of variation in foliar constituents of Mangifera indica Linn on consumption and digestion efficiency of Latoia lepida Cramer. Indian J. Exp. Biol. 34, 472–474.Google Scholar
  15. Julkunen-Tiitto R. (1985) Phenolic constituents in the leaves of Northern willows. Methods for the analysis of certain phenolics. J. Agric. Pood Chem. 33, 213–217.CrossRefGoogle Scholar
  16. Kumar P. and Ballal C. R. (1992) The effect of parasitism by Hyposoter didyamator (Hymenoptera: Ichneumonidae) on food consumption and utilisation by Spodoptera litura (Lepidoptera: Noctuidae). Entomophaga 37, 197–203.CrossRefGoogle Scholar
  17. Lowry O. H., Rosebrough N. G., Farr A. L. and Randall R. J. (1951) Protein measurements with Folin phenol reagent. J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  18. Mani M. (1994) Relative toxicity of different pesticides to Campoletis chlorideae Uchida. J. Biol. Contr. 8, 18–22.Google Scholar
  19. Mattson W. J. Jr. (1980) Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161.CrossRefGoogle Scholar
  20. Murugan K. and George A. Sr. (1992) Feeding and nutritional influence on growth and reproduction of Daphnis nerii (Linn.) (Lepidoptera: Sphingidae). J. Insect Physiol. 38, 961–968.CrossRefGoogle Scholar
  21. Murugan K., Senthil Kumar L., Jeyabalan D., Senthil Nathan S. and Sivaramakrishnan S. (1997) Feeding and reproductive behaviour of flower beetle, Mylabris pustulata Thunb. (Coleoptera: Meloidae). Zoo’s Print 12, 12–14.Google Scholar
  22. Nordlund D. A., Lewis W. J. and Altieri M. A. (1988) Influences of plant produced allelochemicals on the host/prey selection behaviour of entomophagous insects, pp. 65–78. In Novel Aspects of Insect-Plant Interactions (Edited by P. Barbosa and D. K. Letourneau). John Wiley & Sons, New York.Google Scholar
  23. Oka Y., Tsuji H., Ogawa T. and Sasaoka K. (1981) Quantitative determination of the free amino acids and their derivatives in the common edible mushroom Agaricus bisporus. J. Nut. Sci. Vit. 27, 253–262.CrossRefGoogle Scholar
  24. Parnanen S. and Turunen S. (1987) Eicosapentaenoic acid in tissue lipids of Pieris brassicae. Experientia 43, 215–217.CrossRefGoogle Scholar
  25. Price P. W. (1986) Ecological aspects of host plant resistance and biological control. Interactions among three trophic levels. In Interactions of Plant Resistance and Parasitoids and Predators on Insects (Edited by D. J. Boethel and R. D. Eikenbary). Ellis Horwood, Chichester.Google Scholar
  26. Price J. P., Bouton C. E., Gross P., McPheron B. A., Thompson J. N. and Weis A. E. (1980) Interactions among three trophic levels. Influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11, 41–65.CrossRefGoogle Scholar
  27. SAS Institute (1988) SAS Users Guide: SAS/STAT, release 6.03, SAS Institute, Cary, NC.Google Scholar
  28. Schultz J. C. (1983) Impact of variable plant defensive chemistry and susceptibility of insects to natural enemies, pp. 37–54. In Plant Resistance to Insects (Edited by P. Hedin). American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  29. Stadler B. and Mackeur M. (1996) Influence of plant quality on interactions between the aphid parasitoid, Ephedrus californiens Baker and its host, Acrythosiphon pisum Harris. Can. Entomol. 128, 27–39.CrossRefGoogle Scholar
  30. Stipanovic R. D., Williams H. J. and Smith L. A. (1986) Cotton terpenoid inhibition of Heliothis virescens development, pp. 79–94. In Natural Resistance of Plants to Pests (Edited by A. Hedin). American Chemical Society Symposium series. No. 208, Washington, DC.CrossRefGoogle Scholar
  31. Thompson S. N. (1976) The amino acid requirements for larval development of the hymenopterous parasitoid Exeristes roborator Fab. (Hymenoptera: Ichneumonidae). Biochem. Physiol. 53A, 211–213.CrossRefGoogle Scholar
  32. Thorpe K. W. and Barbosa P. (1986) Effects of consumption of high and low nicotine tobacco by Manduca sexta on survival of gregarious endoparasitoid, Conestia congregata. J. Chem. Ecol. 12, 1329–1337.CrossRefGoogle Scholar
  33. Vinson S. B. (1972) Effect of the parasitoid, Campoletis sonoresis, on the growth of its host, Heliothis virescens. J. Insect Physiol. 18, 1509–1514.CrossRefGoogle Scholar
  34. Vinson S. B. and Iwantsch G. H. (1980) Host suitability for insect parasitoids. Annu. Rev. Entomol. 25, 397–419.CrossRefGoogle Scholar
  35. Vogel I. A. (1963) Determination of nitrogen by Kjeldahl’s methods, pp. 256–257. In Text Book of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis. Longman, London.Google Scholar
  36. Waldbauer G. P. (1968) Consumption and utilisation of food by insects. Adv. Insect Physiol. 5, 228–229.Google Scholar
  37. Waldbauer G. P. and Friedman S. (1991) Self-selection of optimal diets by insects. Annu. Rev. Entomol. 36, 43–63.CrossRefGoogle Scholar
  38. Whitham T. G., Maschinski J., Larson K. C. and Paige K. N. (1991) Plant response to herbivory: The continuum from negative to positive and underlying physiological mechanisms, pp. 227–256. In Plant Animal Interactions Evolutionary Ecology in Tropical and Temperate Regions (Edited by P. W. Price, T. M. Lewinsohn, G. W. Fernandes and W. W. Benson). Wiley and Sons, New York.Google Scholar
  39. Yang H. G. and Davis D. D. (1976) Heritability and combing ability for gossypol content in six lines of upland cotton. Crop Science 17, 305–307.CrossRefGoogle Scholar

Copyright information

© ICIPE 2000

Authors and Affiliations

  • K. Murugan
    • 1
  • N. Senthil Kumar
  • D. Jeyabalan
  • S. Senthil Nathan
  • S. Sivaramakrishnan
  • M. Swamiappan
    • 2
  1. 1.Division of EntomologyDepartment of Zoology Bharathiar UniversityCoimbatoreIndia
  2. 2.Biocontrol LaboratoryDepartment of Entomology Tamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations