Advertisement

International Journal of Tropical Insect Science

, Volume 15, Issue 6, pp 621–631 | Cite as

The Future Role of Biotechnology in Integrated Pest Management

  • E. O. Osir
  • F. Gould
Article

Abstract

Crop losses caused by pests are a major problem in both developed and developing countries. Increasing awareness of the environmental consequences of indiscriminate use of chemical pesticides has provided new impetus for the search for alternative ways of managing pests. Particular emphasis has been placed on strategies that cause less pollution to the environment and those that are affordable, especially for the less developed countries. One concept that has received a lot of attention is integrated pest management (IPM), which seeks to manage pests and minimise crop losses by using methods that are economically viable and less harmful to the environment. At least three distinct classes of new biotechnologies can have impacts on integrated pest management. These include microbial biotechnologies, plant molecular biology and genetics, and insect molecular biology and genetics. For example, recent advances in molecular biology have enabled scientists to overcome species barriers and to genetically alter plants, animals and microorganisms in ways that were not possible before. Already, several genetically altered plants which express genes that confer protection against pests have been produced. The techniques of biotechnology have also played important roles in elucidating pest populations and in studying the population dynamics of biological control agents and other types of organisms that live in association with crop plants. This article examines some of the major developments in the areas of molecular biology, genetics and biotechnology and the potential impacts that they could have on integrated pest management worldwide.

Keywords

biotechnology IPM agriculture developing countries 

Résumé

Les pertes causées aux cultures par les ravageurs posent un problème majeur aussi bien dans les pays développés que ceux en développement. Une prise de conscience accrue vis-à-vis des conséquences environnementales de l’usage indiscriminé des pesticides chimiques a donné un nouvel élan à la recherche des solutions possibles pour le contrôle des ravageurs. Un accent particulier a été missur des stratégies occasionnant moins de pollution sur l’environnement et celles qui sont moins onéreuses, particulièrement pour les pays moins développés. Un des concepts qui a le plus attiré l’attention est celui de la lutte dirigée (IPM). La lutte dirigée cherche à contrôler les ravageurs et à minimiser les pertes sur les cultures en utilisant des méthodes qui soient économiquement viables et moins nuisibles à l’environnement.

Au moins 3 classes distinctes de biotechnologies nouvelles peuvent avoir de l’impact sur la lutte dirigée. II s’agit de la biotechnologie microbienne, la biologie et génétique moléculaire végétale, et la biologie et génétique moléculaire de l’insecte. Par exemple, des progrès récentes en biologié moléculaire ont permis aux scientifiques d’aller au délà des barrières des espèces et d’altérer par voie génétique des plantes, des animaux et des microorganismes d’une façon qui n’était pas possible auparavant Déja, plusieurs plantes modifiées par voie génétique et avec expression des gènes conferrant la protection centre des ravageurs ont été produites. Les techniques de biotechnologie ont aussi joué un important rôle dans l’élucidation des populations de ravageurs et dans l’étude de la dynamique des populations des agents de lutte biologique et d’autres types d’organismes vivant en association avec les plantes de cultures. Cet article examine certains développements majeurs dans les domaines de biologie moléculaire, de génétique et de biotechnologie et des impacts potentieles qu’ils pourraient avoir sur la lutte dirigée.

Mots Clés

biotechnologie IPM agriculture pays en voie de développement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson P.W., Coates C. J., Pinkerton A. C, Mende H.A., Howells A.J. and O’Brochta D. A. (1992) Prospects for non-drosophilid germ line transformation. In Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques. IAEA-SM-327/7, pp. 93–100.Google Scholar
  2. Bonning B. C. and Hammock B. D. (1996) Development of recombinant baculovirus for insectcontrol. Annu. Rev. Entomol. 41, 191–210.CrossRefGoogle Scholar
  3. Calvi B. R., Hong T.J., Findley S. D. and Gelbart W. M. (1991 ) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: Hobo, Activator, and Tam 3. Cell 66, 465–471.CrossRefGoogle Scholar
  4. Carlton B. C. (1988) Genetic improvement of Bacillus thuringiensis as a biopesticide. In Biological Pesticides and Novel Plant Resistance for Insect Pest Management (Edited by Roberts D. W. and Granados R. R.), pp. 38–43. Boyce Thompson Institute, Ithaca, NY.Google Scholar
  5. Collins F.H., Sakai R.K., Vernick K.D., Paskewitz S., Seeley D.C., Miller L. H., Collins W.E., Campbell C. C. and Gwadz R. W. (1986) Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234, 607–610.CrossRefGoogle Scholar
  6. Cuozzo M., O’Connel K.M., Kaniewski W., Fnag R.X., Chua N. H. and Turner N. E. (1988) Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Bio/Technology 6, 549–557.Google Scholar
  7. de Barjac H. and Bonnefoi A. (1962) Essai de classification biochimique et serologique de 24 souches de Bacillus du type B. thuringiensis. Entomophaga 7, 5–31.CrossRefGoogle Scholar
  8. Dulmage H. T. (1981) Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control. In Microbial Control of Pests and Plant Diseases 1979–1980 (Edited by Burges H. D.), pp. 193–222. Academic Press Inc. London, UK.Google Scholar
  9. Feitelson J.S., Payne J. and Kim L. (1992) Bacillus thuringiensis: Insects and beyond. Biol Technology 10, 271–275.Google Scholar
  10. Field L.M., Devonshire A.L. and Forde B. G. (1988) Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochemical Journal 251, 309–312.CrossRefGoogle Scholar
  11. Forster G.G., Vogt W. G., Woodburn T. L. and Smith P. H (1988) Computer simulation of genetic control: Comparison of sterile male and field-female killing systems. Theor. Appl. Gen. 76, 870–879.CrossRefGoogle Scholar
  12. Gelernter W. D. (1990) Targeting insecticide-resistant markets. New developments in microbial-based products. In Managing Resistance Practical to Agrochemicals. From Fundamental Research to Practical Strategies (Edited by Green M.B., LeBaron H. M. and Moberd W. K.), pp. 105–117. American Chemical Society, Washingon, DCCrossRefGoogle Scholar
  13. Gerlach W.L., Llewellyn D. and Haseloff J. (1987) Construction of a plant disease gene from the satellite RNA of tobacco ringspot virus. Nature (Lond.) 328, 802–805.CrossRefGoogle Scholar
  14. Gloor G.B., Nassif N.A., Johnson Schlitz D.M., Preston C. R. and Engels W. R. (1991) Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253, 1110–1117.CrossRefGoogle Scholar
  15. Goettel M.S., St. Leger R.J., Bhairi S., Jung M. K, Oakley B. R, and Staples R. C. (1989) Transformation of the entomopathogenic fungus, Metarhizium anisopliae, using the Aspergillus nidulans ben A3 gene. Current Genet. 17, 129–132.CrossRefGoogle Scholar
  16. Gould F., Martinez-Ramirez A., Anderson A., Ferre J., Silva F. J. and Moar W. J. (1992) Broad spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA 89, 7986–7990.CrossRefGoogle Scholar
  17. Hammock B.D., Bonning B. C., Possee R.D., Hanzlik T. N. and Maeda S. (1990) Expression and effects of the juvenile esterase in a baculovirus vector. Nature (Lond.) 244, 458–461.CrossRefGoogle Scholar
  18. Harrison B.D., Mayo M. A. and Baulcombe D. C. (1987) Virus resistance in transgenic plants that express cucumber mosaic satellite RNA. Nature (Lond.) 328, 799–802.CrossRefGoogle Scholar
  19. Hermstadt C., Soares G.G., Wilcox E. R. and Edwards D. L. (1986) A new strain of Bacillus thuringiensis with activity against coleopteran insects. Biol Technology 4, 305–308.Google Scholar
  20. Hilder V. A. and Hamilton W. D. O. (1994) Biotechnology and the prospects for improving crop resistance. 1994 BBCPC Monograph No. 61: Crop Protection in the Developing World.Google Scholar
  21. Hilder V.A., Gatehouse A. M. R., Sheerman S.E., Barker R. F. and Boulter D. (1987) A novel mechanism of insect resistance engineered into tobacco. Nature (Lond.) 330, 160–163.CrossRefGoogle Scholar
  22. Hofte H. and Whiteley H. R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 241–252.Google Scholar
  23. Ishiwata S. (1901) On a kind of severe flacherie (sotto disease) (No. 1). Dainihon Sanshi Kaiho 114, 1–5.Google Scholar
  24. Jarret P. (1983) Comparison of plasmids from twelve isolates of Bacillus thuringiensis H-serotype 7. FEMS Microbiol. Lett. 16, 55–60.CrossRefGoogle Scholar
  25. Kirschbaum J. B. (1985) Potential implication of genetic engineering and other biotechnologies to insect control. Annu. Rev. Entomol. 30, 51–70.CrossRefGoogle Scholar
  26. Krieg A., Huger A., Langerbruch G. and Schnetter W. (1983) Bacillus thuringiensis var. tenebrionis: A new pathotype effective against larvae of Coleoptera. J. Appl. Entomol. 96, 500–508.Google Scholar
  27. Lereclus D., Lecadet M.M., Ribier J. and Dedonder R. (1982) Molecular relationship among plasmids of Bacillus thuringiensis: Conserved sequences through 11 crystalliferous strains. Mol. Gen. Genet. 186, 391–398.CrossRefGoogle Scholar
  28. Lisansky S. G. (1989) Biopesticides. Ag Biotech News and Info. 1, 349–353.Google Scholar
  29. Lycett G. J. (1990) DNA transfection of mosquito cells in culture. Insect Mol. Genet. Newsl. 4, 1–3.Google Scholar
  30. Lycett G. J., Eggleston P. and Crompton J. M. (1989) DNA transfection of an Aedes aegypti mosquito cell line. Hereditary 63, 277.Google Scholar
  31. Macdonald W. W. and Ramachandran C. P. (1965) The influence of the gene fm (filarial susceptibility, Brugia malayi) on the susceptibility of Aedes aegypti to seven strains of Brugia, Wuchereria and Dirofilaria. Ann. Trop. Med. Parasitol. 59, 64–73.CrossRefGoogle Scholar
  32. Maeda S. (1989) Increased insecticidal effect by a recombinant baculovirus carrying a synthetic diuretic hormone gene. Biochem. Biophys. Res. Commun. 165, 1177–1183.CrossRefGoogle Scholar
  33. Melton D.A., Krieg P.A., Rebagliati M.R., Maniatis T., Zinn K. and Green M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes for plasmid containing bacteriophage SP6 promoter. Nucleic Acids Research 12, 7035–7056.CrossRefGoogle Scholar
  34. Miller H., Sakai R.K., Romans P., Gwadz R.W., Kontoff P. and Coon H. G. (1987) Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science 237, 779–781.CrossRefGoogle Scholar
  35. Miller S. A. and Williams R. J. (1990) Agricultural diagnostics. In Agricultural Biotechnology: Opportunities for International Development (Edited by Persley G. J.), pp. 87–107. CAB International, Wallingford, UK.Google Scholar
  36. Persley G. (1989) The application of biotechnology to agriculture in developing countries. AglBiotech News and Info. 1(1), 23–pp4.Google Scholar
  37. Poinar G. O. and Thomas G. M. (1966) Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteraceae: Eubacteriales) in the development of the nematode, DD 136 (Neoaplectana sp: Steinernematidae). Parasitology 56, 385–390.CrossRefGoogle Scholar
  38. Roberts D. W. and Humber R. A. (1981) Entomogenous fungi. In Biology of Conidial Fungi (Edited by Cole G. T. and Kendrick B.), pp. 201–236. Academic Press, NY, USA.CrossRefGoogle Scholar
  39. Spralding A. C. (1986) P element-mediated transformation. In Drosophila: A Practical Approach (Edited by Roberts O. B.), pp. 175–197. IRL Press, Oxford.Google Scholar
  40. Stewart L. M. D., Hirst M., Ferber M.L., Merryweather A.T., Cayley P. J. and Possee R. D. (1991) Construction of an improved baculovirus insecticide containing an insect-specific toxin gene. Nature (Lond.) 352, 85–88.CrossRefGoogle Scholar
  41. Tomalski M. D. and Miller L. K. (1991) Insect paralysis by baculovirus-mediated expression of a mite neurotoxin gene. Nature (Lond.) 352, 82–85.CrossRefGoogle Scholar
  42. Torrance L. and Robinson D. (1989) Modern methods of detecting and identifying potato viruses. Ag/ Biotech News and Info. 6, 891–896.Google Scholar

Copyright information

© ICIPE 1994

Authors and Affiliations

  • E. O. Osir
    • 1
  • F. Gould
    • 2
  1. 1.The International Centre of Insect Physiology and EcologyNairobiKenya
  2. 2.Department of EntomologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations