International Journal of Tropical Insect Science

, Volume 15, Issue 6, pp 557–582 | Cite as

Ecology and Integrated Pest Management

  • J. C. Van Lenteren
  • W. A. Overholt


The struggle to control populations of organisms that feed on agricultural crops, livestock, and directly on humans is as old as recorded history, and will continue into the perceivable future. Only 30 years ago, the availability of relatively cheap and highly effective synthetic organic pesticides was thought to be the ultimate solution to pest populations. However, our naïveté regarding the ability of pest populations to rapidly adapt to simplistic man-induced selection pressures has become increasingly apparent, as have the detrimental impacts of pesticides on the environment. The evolution of the integrated pest management paradigm can be traced to these concerns, and it is now accepted that sustainable solutions to the management of pest populations will only be borne out of ap increased understanding of the functioning of ecosystems. Knowledge of the population dynamics, and underlying causes of density changes in pest populations, behavioural ecology, and population genetics of pests and natural enemies, are essential elements for designing appropriate biologically intensive strategies for pest management. Progress is being made, and several examples of innovative strategies and promising areas of research, are discussed. Future work must continue to be based on a solid foundation of ecological understanding, to avoid the pitfalls of simple opportunistic solutions.


Insecta population dynamics population genetics behavioural ecology 


La bataille contre les populations d’organismes vivant aux dépens des cultures, du bétail et directement des humains, est aussi vieille que l’histoire écrite, et se poursuivra encore dans un avenir prévisible. Il y a de cela 30 ans, on pensait que la disponibilité des pesticides organiques de synthèse relativement bon marché et réellement efficaces allait être la solution finale contre les populations des ravageurs. Cependant, notre naïveté concernant leur capacité à s’adapter rapidement aux pressions de selection simplistes induites par l’homme, est devenue de plus en plus apparente, tout comme le sont les impacts nuisibles des pesticides sur l’environnement L’évolution du paradigme de la lutte dirigée trouve ses origines dans ces préoccupations et il est maintenant acquis que des solutions durables pour la lutte dirigée contre des populations des ravageurs, devront reposer sur une compréhension accrue du fonctionnement des écosystèmes. La connaissance sur la dynamique des populations et des causes sous-jacentes des changements de densité des populations des ravageurs, leur écologie comportementale et leur génétique et leurs ennemis naturels sont des éléments essentiels pour la conception des stratégies de lutte intense qui soient biologiquement appropriées en lutte dirigée. Des progrés sont en train d’être accomplis et plusieurs exemples de stratégies innovatrices et des domaines prometteurs de recherche sont discutés. Le travail futur doit continuer à reposer sur une base solide de connaissances écologiques et éviter les pièges des solutions opportunistes faciles.

Mots Clés

Insecta dynamique des populations génétique des populations écologie comportementale 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrewartha H. G. and Birch L. C. (1954) The Distribution and Abundance of Animals. The University of Chicago Press, Chicago.Google Scholar
  2. Beckendorf S. K. and Hoy M. A. (1985) Genetic improvement of arthropod natural enemies through selection, hybridization or genetic engineering techniques. In Biological Control in Agricultural IPM Systems (Edited by Hoy M. A. and Herzog D.C.), pp. 167–187. Academic Press, Orlando.CrossRefGoogle Scholar
  3. Berger A. (1989) Egg weight, batchsize andfecundity of the spotted stalk borer, Chilo parteilos in relation to weight of females and time of oviposition. Entomol. Exp. Appl. 50, 199–207.CrossRefGoogle Scholar
  4. Bigler F., Bieri M., Fritschy A. and Seidel K. (1988) Variation in locomotion between laboratory strains of Trichogramma maidis and impact on parasitism of eggs of Ostrinia nubilalis in the field. Entomol. Exp. Appl. 49, 283–290.CrossRefGoogle Scholar
  5. Bodenheimer F. S. (1951) Insects as Human Food. Junk, The Hague.CrossRefGoogle Scholar
  6. Brown T. M. and Brogdon W. G. (1987) Improved detection of insecticide resistance through conventional and molecular techniques. Annu. Rev. Entomol. 32, 145–162.CrossRefGoogle Scholar
  7. Bruce-Chwatt L. J. (1985) Essential Malariology. Second edition. William Heinemann Medical Books, London.Google Scholar
  8. Carson R. (1962) Silent Spring. Houghton-Mifflin, Boston.Google Scholar
  9. Chitty D. (1960) Population processes in the vole and their relevance to general theory. Can. J. Zool. 38, 99–113.CrossRefGoogle Scholar
  10. Cockburn A.F., Howells A. J. and Whitten M. J. (1989) Recombinant DNA technology and genetic control of pest insects. In Genetical and Biochemical Aspects of Invertebrate Crop Pests (Edited by Russel G. E.), pp. 319–349. Intercept, Andover.Google Scholar
  11. Croft B. A. (1988) Technical and policy issues in management of pesticide resistance in arthropod pests. In Innovations in Pest Management, Proceedings from an International Forum on Integrated Pest Management: Biological Controls, and Other New Approaches to Controlling Pests in Our Environment (Edited by Engelstad S., Coli W. M. and Carson J. L.) Sturbridge Mass. 7–8 March 1988.Google Scholar
  12. Crow J. F. (1957) Genetics of insect resistance to chemicals. Annu. Rev. Entomol. 2, 227–246.CrossRefGoogle Scholar
  13. Cuisance D., Politzar H., Merot P., Tambourne L., Bauer B., Kabore I. and Filledier J. (1985) La campagne de lutte integree contre des glossines dans la zone pastorale d’accueil de Sideradougou (BurkinaFaso). In International Scientific Council for Trypanosomiasis Research and Control. Eighteenth Meeting, Harare.Google Scholar
  14. DeFoliart G. R. (1989) The human use of insects as food and as animal feed. Bull. Entomol. Soc. Am. 35, 22–35.Google Scholar
  15. Den Boer P. J. (1968) Spreading of risk and the stabilisation of animal numbers. Acta Biotheoretia 18, 165–194.CrossRefGoogle Scholar
  16. Edwards C. A. (1986) Agrochemicals as environmental pollutants. In Control of Pesticides Applications and Residues in Food (Edited by Hofsten B. V. and Ekstrom G.). Swedish Scientific Press, Uppsala, Sweden, pp. 1–19.Google Scholar
  17. EPA (1989) Pesticide industry sales and usage: 1988 market estimates. EPA, Economic Analysis Branch. Washington, DC.Google Scholar
  18. FAO (1991a) Programme for the eradication of the New World screwworm Cochliomyia hominivorax from North Africa. Report for the period 1 Feb-31 May.Google Scholar
  19. FAO (1991b) Programme for the eradication of the New World screwworm Cochliomyia hominivorax from North Africa. Report for the period 1 June to 31 August.Google Scholar
  20. Georghiou G. P. (1990) Overview of insecticide resistance. In Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies (Edited by Green M.B., LaBaron H. M. and Moberg W. K.), pp. 18–41. American Chemical Society. Washington, DC.CrossRefGoogle Scholar
  21. Handler A. M. and O’brochta D. A. (1991) Prospects for gene transformation in insects. Annu. Rev. Entomol. 36, 159–183.CrossRefGoogle Scholar
  22. Hargrove J. W. and Langley P. A. (1990) Sterilizing tsetse (Diptera: Glossinidae) in the field: A successful trial. Bull. ent. res. 80, 397–403.CrossRefGoogle Scholar
  23. Headley J. C. and Hoy M. A. (1987) Benefit/cost analysis of an integrated mite management program for almonds. J. Econ. Entomol. 80, 555–559.CrossRefGoogle Scholar
  24. Hogue C.L. (1987) Cultural entomology. Annu. Rev. Entomol. 32, 181–199.CrossRefGoogle Scholar
  25. Hoy M. A. (1985) Recent advances in genetics and genetic improvement of the phytoseiidae. Annu. Rev. Entomol. 30, 345–370.CrossRefGoogle Scholar
  26. Huettel M.D., Fuerst P.A., Maruyama T. and Chakroborty R. (1980) Genetic effects of mutiple population bottlenecks in the mediterranean fruit fly (Ceratitis capitata). Genetics 94, 47–48.Google Scholar
  27. Huffaker C.B., Simmohds F. J. and Laing J. E. (1976) The theoretical and empirical basis of biological control. In Theory and Practice of Biological Control (Edited by Huffaker C. B. and Messenger P. S.), pp. 42–80. Academic Press, New York.Google Scholar
  28. Kimani S. W. (1994) Biosystematics of Cotesia species. IN ICIPE Annual Scientific Report. ICIPE Science Press, Nairobi.Google Scholar
  29. Knipling E. F. (1982) Present status and future trends of the SIT approach to the control of arthropod pests. In Sterile Insect Technique and Radiation in Insect Control: Proceedings of a Symposium. Neuherberg 29 June-3 July 1991. International Atomic Energy Agency.Google Scholar
  30. Koyama J. (1982) The Japan and Taiwan projects on the control and/or eradication of fruit flies. In Sterile Insect Technique and Radiation in Insect Control: Proceedings of a Symposium. Neuherberg 29 June-3 July 1991. International Atomic Energy Agency.Google Scholar
  31. Krebs C. J. (1978) A review of the Chitty hypothesis of population regulation. Can. J. Zool. 56, 2463–2480.CrossRefGoogle Scholar
  32. Lewis W.J., Beevers B., Nordlund D.A., Gross H. R. and Hagen K. S. (1979) Kairomones and their use for management of entomophagous insects. IX. Investigations of various kairomone-treatment patterns for Trichogramma spp. J. Chem. Ecol. 5, 673–680.CrossRefGoogle Scholar
  33. Lewis W. J. and Tumlinson J. H. (1988) Host detection by chemically mediated associative learning in a parasitic wasp. Nature 331, 257–259.CrossRefGoogle Scholar
  34. Lewis W.J., Vet L. E. M., Tumlinson J.H., van Lenteren J. C. and Papaj D. R. (1990) Variations in parasitoid foraging behavior: Essential ele-mentofasound biological controltheory. Environ. Entomol. 19, 1183–1193.CrossRefGoogle Scholar
  35. Menken S. B. J. and Ulenberg S. A. (1989) Biochemical characters in agricultural entomology. In Genetical and Biochemical Aspects of Invertebrate Crop Pests (Edited by Russel G. E.), pp. 129–184. Intercept, Andover.Google Scholar
  36. Milne C.P., Eishen F.A., Collins J. E. and Jensen T. L. (1989) Preliminary evidence for honey bee sperm-mediated DNA transfer. Int. Symp. Mol. Insect Sci. Tuscon. (abstract).Google Scholar
  37. Mohyuddin A.I., Inayatullah C. and King E. G. (1981) Host selection and strain occurrence in Apanteles flavipes (Cameron) (Hymenoptera: Braconidae) and its bearing on biological control of graminaceous stemborers (Lepidoptera: Pyralidae). Bull. Entomol. Res. 71, 575–581.CrossRefGoogle Scholar
  38. Nicholson A. J. (1954) An outline of the dynamics of animal populations. Austral. J. Zool. 2, 9–65.CrossRefGoogle Scholar
  39. Nicoli G., Benuzzi M. and Leppla N. C. (eds.) (1993) Proceedings 7th Workshop Global IOBC Working Group “Quality Control of Mass Reared Organisms”, Rimini, September 1993.Google Scholar
  40. Nordlund D.A., Jones R. L. and Lewis W. J. (1981) Semiochemicals: Their Role in Pest Control. Wiley, New York.Google Scholar
  41. Odhiambo T. R. (1977) Entomology and the problems of the tropical world. Proceedings XVth International Congress of Entomology, Washington D.C., August 19–27, 1976, pp. 52–59.Google Scholar
  42. Offori E. D. (1993) Tsetse sterile insect technique programmes in Africa. In Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques: Proceedings of a Symposium, Vienna 12–23 October 1992. International Atomic Energy Agency.Google Scholar
  43. Overholt W.A., Ngi-Song A.J., Kimani S.K., Mbapila J., Lammers P. and Kioko E. (1994) Ecological considerations of the introduction of Cotesia flavipes Cameron (Hymenoptera: Braconidae) for biological control of Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae), in Africa. Biocontr. News and Info. 15, 19N–24N.Google Scholar
  44. Patterson R.S., Weidhaas D.E., Ford H. R. and Lofgren S. R. (1970) Suppression and elimination of an island population of Culex pipiens quinquefasciatus with sterile males. Science 168, 1368–1370.CrossRefGoogle Scholar
  45. Pimentel D. (1968) Population regulation and genetic feedback. Science 159, 1432–1437.CrossRefGoogle Scholar
  46. Pimentel D., Acquay H., Biltonen M., Rice R., Silva M., Nelson J., Lipher V., Giordano S., Horiwitz A. and D’Amore M. (1992) Environmental and economic costs of pesticide use. BioScience 42, 10.CrossRefGoogle Scholar
  47. Roush R. T. and McKenzie J. A. (1987) Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 32, 361–380.CrossRefGoogle Scholar
  48. Saul S. H. (1989) Genetics of the mediterranean fruit fly (Ceratitis capitata) (Weidemann). In Genetical and Biochemical Aspects of Invertebrate Crop Pests (Edited by Russel G. E.), pp. 1–36. Intercept, Andover.Google Scholar
  49. Saxena R. C. and Barrion A. A. (1987) Biotypes of insect pests of agricultural crops. Insect Sci. Applic. 8, (4/5/6), 453–458.Google Scholar
  50. Smith R.A., Mitler T. E. and Smith C. N. (1973) History of Entomology. Annual Reviews Inc., Palo Alto, California.Google Scholar
  51. Smith R. F. and Reynolds H. T. (1966) Principles, definitions and scope of integrated pest control. Proceedings FAO Symposiumon Integrated Pest Control, Rome, 1965, FAO 1, 11–17.Google Scholar
  52. Southwood T.R.E. (1977) Entomology andmankind. Proceedings XVth International Congress of Entomology, Washington DC, August 19–27, 1976, pp. 36–51.Google Scholar
  53. Southwood T..R. E. (1978) Ecological Methods. Chapman and Hall, London.Google Scholar
  54. Steiner L.F., Harris E.J., Mitchell W. C., Fujimoto M.S., Christenson L. D. (1965) Melon fly eradication by overflooding with sterile flies. J. Econ. Entomol. 58, 519–522.CrossRefGoogle Scholar
  55. Takken W., Oladunmade M.A., Dengwat L., Feldman H.U., Onah J.A., Tenabe S. O. and Hamann H. J. (1986) The eradication of Glossina palpalis palpalis (RobineaurDesvoidy) (Diptera: Glossinidae) using traps, insecticide-impregnated targets and the sterile insect technique in central Nigeria. Bull. Entomol. Res. 76, 275–286.CrossRefGoogle Scholar
  56. United States Congress, Office of Technology Assessment (1995) Biologically Based Technologies for Pest Control. US Government Printing Office, Washington, DC.Google Scholar
  57. USAID (1990) Reports to the Congress of the United States: Pesticide Use and Poisoning: A Global Review. USAID, Washington, DC.Google Scholar
  58. van Lenteren J. C. (1986) Evaluation, mass production, quality control and release of entomophagous insects. In Biological Plant and Health Protection (Edited by Franz J. M.), pp. 31–56. Fischer, Stuttgart.Google Scholar
  59. van Lenteren J. C. (1987) Environmental manipulation advantageous to natural enemies of pests. In IPM Quo Vadis (Edited by Delucchi V.), pp. 123–163. Parasitis Symposium Book, Geneva.Google Scholar
  60. van Lenteren J. C. (1991) Insects, man and the environment: Who will survive? In Environmental Concerns: An Inter-disciplinary Exercise (Edited by Hansen J. A.), pp. 191–210. Elsevier, London.CrossRefGoogle Scholar
  61. van Lenteren J. C. (1993) Parasites and predators play a paramount role in pest management. In Pest Management: Biologically Based Technologies (Edited by Lumsden R. D. and Vaughn J. L.), pp. 68–81. American Chemical Society, Washington DC.Google Scholar
  62. Vet L. E. M. (1983) Host-habitat location through olfactory cues by Leptopilina clavipes (Hartig) (Hym.: Eucoilidae), a parasitoid of fungivorous Drosophila: The influence of conditioning. Neth. J. Zool. 33, 225–248.CrossRefGoogle Scholar
  63. Vet L. E. M. and Dicke M. (1992) Ecology of infochemical use by natural enemies in a tri trophic context. Annu. Rev. Entomol. 37, 141–172.CrossRefGoogle Scholar
  64. Vet L. E. M., Wäckers F. L. and Dicke M. (1991) How to hunt for hiding hosts; the reliability-detectability problem for foraging parasitoids. Neth. J. Zool. 41, 202–213.Google Scholar
  65. Vinson S. B. (1988) Comparison of host characteristics matelicithostrecognition behavior of parasitoid hymenoptera. In Advances in Parasitic Hymenoptera Research (Edited by Gupta G. K. and Brill E. J.), pp. 285–291. Kinderhook, New York.Google Scholar
  66. Walgate R. (1990) Miracle or Menace: Biotechnology and the Third World. Panos, Budapest.Google Scholar
  67. WHO (1957) WHO Expert committee on insecticides. WHO techn. rep. ser. 125.Google Scholar
  68. WHO (1986) Assessment of mortality and morbidity due to unintentional pesticide poisonings. WHO/ VBC/86.929.Google Scholar
  69. Wynne-Edwards V. C. (1962) Animal Dispersion in Relation to Social Behaviour. Oliver and Boyd, Edinburgh.Google Scholar
  70. Yamagishi M., Kakinohana H., Kuba H., Kohama T., Nakamoto Y., Sokei Y. and Kingo K. (1993) Eradication of the melon fly from Okinawa, Japan by means of the sterile insect technique. In Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques: Proceedings of A Symposium, Vienna 12–23 October 1992. International Atomic Energy Agency.Google Scholar
  71. Zadoks J. C. (ed) (1990) Development of farming systems: Evaluation of the five-year period 1980–1984. Pudoc, Wageningen, 90 pp.Google Scholar

Copyright information

© ICIPE 1994

Authors and Affiliations

  • J. C. Van Lenteren
    • 1
  • W. A. Overholt
    • 2
  1. 1.Department of EntomologyWageningen Agricultural UniversityWageningenThe Netherlands
  2. 2.International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya

Personalised recommendations