Advertisement

Isolation and Properties of A 23-KD Haemolymph Protein From the Tsetse, glossina Morsitans Morsitans

  • Edward K. Nguu
  • Elue O. Osir
  • James O. Ochanda
  • Norah K. Olembo
Research Article

Abstract

The haemolymph of the tsetse, Glossina morsitans morsitans, contains a low molecular weight protein of very high density (1.29 g/ml). The protein was detected in the haemolymph during all developmental stages of the insect. Purification of the protein was achieved by a combination of density gradient ultracentrifugation and repeated gel permeation chromatography. Electrophoresis under non-denaturing and denaturing conditions showed the protein to be a single polypeptide chain (M ~23,000). Amino acid analysis revealed a relatively high content of the acidic amino acids as well as serine and glycine. The protein contained lipids as shown by Sudan Black staining but was non-glycosylated. Using rabbit antiserum against the isolated protein in immunodiffusion and immunoblotting experiments, no cross-reactivity was detected with haemolymph samples from insects representing six orders. Although the function of the protein remains unknown, its uniqueness to Glossina suggests that it may have a role in the physiology of this insect.

Key Words

Glossina morsitans haemolymph protein physical properties chemical properties 

Résumé

L’hémolymphe de la mouche tsetsé, Glossina morsitans morsitans, renferme une protéine de faible poids moléculaire à densité très élevée (1,29 g/ml). La protéin a été décelée dans l’hémolymphe à tous les stades de développement de l’insecte. Sa purification est obtenu grâce à une combinaison de l’ultracentrifugation par gradient de densité et de la chromatographie repetée sur gel filtrant. L’électrophorèse en conditions non denaturante et denaturante a révelé que la protéine est une simple chaîne de polypeptide (Mr = 23,000) serine et glycine. L’analyse des acides aminés a permis de déceler un taux élevée d’acides aminés acides. La protéine contient également des lipides relevés par coloration au Noir du Soudan, mais était non glycolisée. En utilisant de l’antisérum de lapin sur la protéine isolée au cours de l’immunodiffusion et l’immunotampon, aucune réaction croisée fut détectée avec des échantillons d’hémolymphe d’insectes représentant six ordres. La fonction de la protéin reste cependant inconnue mais sa spécificité par rapport au Glossina, laisse supposer qu’elle pourrait jouer un rôle important dans la physiologie de cet insecte.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown J. J. and Chippendale G. M. (1978) Juvenile hormone and protein associated with the larval diapause of the southwestern corn borer, Diatraea grandiosella. Insect Biochem. 8, 359–367.CrossRefGoogle Scholar
  2. Burnette W. N. (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulphate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radio-iodinated protein A. Anal. Biochem. 122, 195–203.CrossRefGoogle Scholar
  3. Bursell E., Billing K. C, Hargrove J. W., MacCabe C. T. and Slack E. (1974) Metabolism of the blood meal in tsetse flies. Acta Tropica 31, 297–320.PubMedGoogle Scholar
  4. Chino H. and Kitazawa K. (1981) Diacylglycerol-carrying lipoprotein of haemolymph of the locust and some insects. J. Lipid Res. 22, 1042–1052.PubMedGoogle Scholar
  5. Dillwith J. W. and Chippendale G. M. (1984) Purification and properties of a protein that accumulates in the fat body of prediapausing larvae of the southwestern corn borer, Diatraea grandiosella. Insect Biochem. 14, 369–381.CrossRefGoogle Scholar
  6. Ferkovich S. M., Silhacek D. L. and Rutter R. (1975) Juvenile hormone binding proteins in the haemolymph of Indian meal moth. Insect Biochem. 5, 141–150.CrossRefGoogle Scholar
  7. Goodman W. and Chang E. (1985) Juvenile hormone cellular and haemolymph binding proteins. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology (Edited by Kerkut G. A and Gilbert L. I.), Vol 7, pp. 491–510. Pergamon Press, Oxford.Google Scholar
  8. Hammock B. D. (1985) Regulation of juvenile hormone titer: Degradation. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut G. A and Gilbert L. I.), Vol. 7, pp. 431–472, Pergamon Press, Oxford.Google Scholar
  9. Haunerland N. H., Ryan R. O., Law J. H. and Bowers W. S. (1986) Lipophorin from the grasshopper, Gastrimargus africanus. Isolation and properties of apolipophorin-III. Insect Biochem. 16, 797–802.CrossRefGoogle Scholar
  10. Haunerland N. H., Ryan R. O., Law J. H. and Bowers W. S. (1987) Purification of very high density lipoprotein by differential density gradient ultracentri fligation. Anal. Biochem. 161, 307–310.CrossRefGoogle Scholar
  11. Kanost M. R., Kawooya J. K., Law J. H., Ryan J. O., Van Heusden M. C and Ziegler R. (1990) Insect haemolymph proteins. Adv. Insect Physiol. 22, 299–396.CrossRefGoogle Scholar
  12. Kapitany R. A. and Zebrowski E. J. (1973) A high resolution PAS stain for polyacrylamide gel. Anal. Biochem. 56, 361–369.CrossRefGoogle Scholar
  13. Kawooya J. K. and Law J. H. (1983) Purification and properties of microvitellogenin of Manduca sexta. Role of juvenile hormone in appearance and uptake. Biochem. Biophys. Res. Commun. 117, 643–650.CrossRefGoogle Scholar
  14. Kawooya J. K., Meredith, S. C, Wells M. A., Kezdy F. J. and Law J. H. (1986) Physical and surface properties of insect apolipophorin-III. J. Biol. Chem. 261, 13588–13591.PubMedGoogle Scholar
  15. Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227, 680–685.CrossRefGoogle Scholar
  16. Narayan K. A. (1975) Electrophoretic methods for the separation of serum lipoproteins. (Edited by Perkins E.G.), pp. 225–249. American Oil Chemists’ Society, Champaign, IL.Google Scholar
  17. Ochanda J. O., Osir E. O., Nguu E. K. and Olembo N. K. (1991) Lipophorin from the tsetse fly, Glossina morsitans morsitans. Comp. Biochem. Physiol. 99B, 811–814.Google Scholar
  18. Osir E. O., Wells M. A. and Law J. H. (1986) Studies of vitellogenin from the tobacco hornworm, Manduca sexta. Arch, insect. Biochem. Physiol. 3, 217–223.CrossRefGoogle Scholar
  19. Osir E. O., Labongo L. V. and Unnithan G. C (1989) A high molecular weight diapause associated protein from the stem-borer, Busseola fusca: Purification and properties. Arch. Insect Biochem. Physiol. 11, 173–187.CrossRefGoogle Scholar
  20. Ouchterlony O. (1968) Antibody reactions in gels. In Handbook of Immunodiffusion and Immunoelectrophoresis. Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  21. Riddiford L. M. and Law J. H. (1983) Larval serum proteins of Lepidoptera. In the Larval Serum Proteins of Insects (Edited by Scheller K.), pp. 75–85. Thieme, Stuttgart.Google Scholar
  22. Rudnicka M., Sehnal F., Jarolim V. and Kochman M. (1979) Hydrolysis and binding of the juvenile hormone in the haemolymph of Galleria mellonella. Insect Biochem. 9, 569–575.CrossRefGoogle Scholar
  23. Shapiro J. P., Law J. H. and Wells M. A. (1988) Lipid transport in insects. A. Rev. Entomol. 33, 297–318.CrossRefGoogle Scholar
  24. Thomas K. K. (1979) Isolation and partial characterisation of the haemolymph lipoproteins of the wax moth, Galleria mellonella. Insect Biochem. 9, 211–219.CrossRefGoogle Scholar
  25. Turunen S. and Chippendale G. M. (1980) Fat body protein associated with the larval diapause of the southwestern corn borer, Diatraea grandiosella: Synthesis and characteristics. Comp. Biochem. Physiol. 65B, 595–603.Google Scholar
  26. Van der Horst D. J., Van Doom J. M. and Beenakkers A. M. Th. (1984) Hormone-induced rearrangement of locust haemolymph lipoproteins. The involvement of glycoprotein C2. Insect Biochem. 14, 495–504.CrossRefGoogle Scholar
  27. Wells M. A., Ryan R. O., Prasad S. V. and Law J. H. (1985) A novel procedure for purification of apolipophorin-III. Insect Biochem. 15, 565–571.CrossRefGoogle Scholar

Copyright information

© ICIPE 1992

Authors and Affiliations

  • Edward K. Nguu
    • 1
  • Elue O. Osir
    • 2
  • James O. Ochanda
    • 1
  • Norah K. Olembo
    • 1
  1. 1.Department of BiochemistryThe University of NairobiNairobiKenya
  2. 2.The International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya

Personalised recommendations