Advertisement

Mode of Action of Bacillus Thuringiensis and Nuclear Polyhedrosis Virus in the Larvae of Spodoptera Littoralis (Boisd.)

  • H. S. Salama
  • A. Sharaby
  • M. Magd El-Din
Article

Abstract

An additive effect was obtained after treatment of Spodoptera littoralis (Boisd.) larvae with a combination of Bacillus thuringiensis and nuclear poly hedrosis virus (NPVs). The NPVs was the more pathogenic followed by B. t., cytopathologically. Simultaneous application of B. t. and NPVs affected the midgut cells by causing a very specific appearance of cell hypertrophy with some deposits of B. t. crystals on the fourth day of infection as shown by scanning electron microscopy. Transmission electron microscopy showed that the vegetative cells and spores of B. t. entered the midgut epithelial cells followed by the virus. It is possible that the initial destruction caused by the B. t. toxin facilitated penetration and entry of the virus.

Key Words

Additive effect nuclear polyhedrosis virus Bacillus thuringiensis Spodoptera littoralis 

Résumé

L’effet additionnel etait obtenue apres un traitement combine du Bacillus thuringiensis et le virus nuclear polyhedrosis (NPVs) contre la larve Spodoptera littoralis. Le viruse NPVs était le plus pathogenique puis etait B. t. Les effets cytopathologiques du traitement combine du B. t. et NPVs sur les cellules du midgutte (midgut) hypertrophie nombre de cristals de B. t. ont ete observees par le microscope (scanning electron microscopy). La transmission microscopicale electronique a montre que les cellules vegetatives et les spores du B. t. ont entre les cellules epitheliales du midgutte, ensuite le virus est rentre. Il est possible que les premieres destructions qui sont causes par le toxin de B. t. facilitent la penetration et l’entree de virus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott W. S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267.CrossRefGoogle Scholar
  2. Burgerjon A. and Martouret D. (1971) Determination and significance of the host spectrum of Bacillus thuringiensis. In Microbial Control of Insects and Mites (Edited by Burges H. D. and N. W. Hussey), pp. 303–322. Academic Press, New York.Google Scholar
  3. Chiang A. S., Yen D. F. and Peng W. K. (1986a) Germination and proliferation of Bacillus thuringiensis in the gut of rice moth larvae, Corcyra cephalonica. J. Invertebr. Pathol. 48, 96–99.CrossRefGoogle Scholar
  4. Chiang A. S., Yen D. F. and Peng W. K. (1986b) Mode of action of Bacillus thuringiensis to different types of hosts in midgut cellular defense reactions and gut fluid pH changes in infected rice moth larva aspects. Plant Prot. Bull. (Taiwan, R.O.C.) 28, 179–189.Google Scholar
  5. Dales S. (1965) Replication of animal viruses as studied by electron microscopy. Am. J. Med. 38, 699–715.CrossRefGoogle Scholar
  6. Dulmage H. T., Boening O., Rehenborg C., and Hansen G. (1971) A proposed standardized bioassay method for formulation of Bacillus thuringiensis based on the international unit. J. Invertebr. Pathol. 18, 240–245.CrossRefGoogle Scholar
  7. Ebersold H. R., Lothy P. and Moller M. (1977) Changes in the fine structure of the gut epithelium of Pieris brassicae induced by the δ-endotoxin of Bacillus thuringiensis. Bull. Soc. Entomol. Suisse 50, 269–276.Google Scholar
  8. Fast P. G. (1981) Bacteria: The crystal toxin of Bacillus thuringiensis. In Microbial Control of Pests and Plant Diseases (Edited by Burges H. D.), pp. 223–248. Academic Press, New York.Google Scholar
  9. Finney D. J. (1952) Probit Analysis a Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press.Google Scholar
  10. Griego V. M., Fancher L. J. and Spence K. D. (1980) Scanning electron microscopy of the disruption of tobacco hornworm, Manduca sexta, midgut by Bacillus thuringiensis endotoxin. J. Invertebr. Pathol. 35, 186–189.CrossRefGoogle Scholar
  11. Heimpel A. N. and Angus T. A. (1959) The site of action of crystaliferous bacteria in lepidoptera larvae. J. Insect. Pathol. 1, 152–170.Google Scholar
  12. Kinsinger R. A. and McGaughey W. M. (1979) Histopathological effects of Bacillus thuringiensis on the larvae of the Indian meal moth and the almond moth. Ann. Entomol Soc. Am. 72, 787–790.CrossRefGoogle Scholar
  13. Lacey L. A. and Federici B. A. (1979) Pathogenesis and midgut histopathology of Bacillus thuringiensis in Simulium vittatum. J. Invertebr. Pathol. 133, 172–182.Google Scholar
  14. Lowe R. E. and Paschke J. D. (1968) Pathology of a double viral infection of Trichoplusia ni. J. Invertebr. Pathol. 12, 438–443.CrossRefGoogle Scholar
  15. Mathavan S., Sudha P. M. and Pechimuthu S. M. (1989) Effect of Bacillus thuringiensis on the midgut cells of Bombyx mori larvae: A histopathological and histochemical study. J. Invertebr. Pathol. 53, 217–227.CrossRefGoogle Scholar
  16. Matter M. M. and Zohdy N. M. Z. (1981) Biotic efficiency of Bacillus thuringiensis Beri, and a nuclear polyhedrosis virus on larvae of the American bollworm, Heliothis armigera Hbn. (Lepid, Noctuidae). Z. Angew. Entomol. 92, 336–343.CrossRefGoogle Scholar
  17. Nishiitsutsuji-Uwo J. and Endo Y. (1980) Mode of action of Bacillus thuringiensis δ-endotoxin: General characteristics of intoxicated Bombyx larvae. J. Invertebr. Pathol. 35, 219–288.CrossRefGoogle Scholar
  18. Nishiitsutsuji-Uwo J. and Endo Y. (1981) Mode of action of Bacillus thuringiensis δ-endotoxin: Effect on Galleria mellonella. Appl. Entomol. Zool. 16, 79–87.CrossRefGoogle Scholar
  19. Salama H. S., Foda M. S. and Sharaby A. (1981) Potency of spore-8-endotoxin complex of Bacillus thuringiensis against some cotton pests. Z. angew. Entomol. 91, 388–398.CrossRefGoogle Scholar
  20. Salama H. S. and Sharaby A. (1985) Histopathological changes in Heliothis armigera infected with Bacillus thuringiensis as detected by electron microscopy. Insect Sci. Applic. 6, 503–511.Google Scholar
  21. Sutter G. R. and Raun E. S. (1967) Histopathology of European corn borer larvae treated with Bacillus thuringiensis. Invertebr. Pathol. 9, 90–103.CrossRefGoogle Scholar
  22. Tanda Y. (1959) Synergism between two viruses of the armyworms, Pseudaletia unipuncta (Haworth) (Lepidoptera1 Noctuidae). J. Insect. Pathol. 1, 215–231.Google Scholar

Copyright information

© ICIPE 1993

Authors and Affiliations

  • H. S. Salama
    • 1
  • A. Sharaby
    • 2
  • M. Magd El-Din
    • 2
  1. 1.Department of Biology, Faculty of MedicineKing Abdul-Aziz UniversityJeddahUSA
  2. 2.Department of Pests and Plant ProtectionNational Research CentreDokki, CairoEgypt

Personalised recommendations