Advertisement

Effects of Gamma-Radiation on Mature Pupae of Maize Borer, Chilo Partellus (Swinhoe) (Lepidoptera: Pyralidae)

  • A. R. Bughio
Research Article

Abstract

Mature (5- to 6-day-old) male and female pupae of C. partellus were irradiated at 5 to 20 kilo-Roentgen (kR) and 5 to 10 kR respectively. Emergence of normal appearing moths, pupal periods and adult longevities remained statistically unaffected. Fecundity of normal (nonirradiated) females mated with males irradiated as pupae was nonsignificantly different from control, but fecundity of females irradiated as pupae at 10 kR was significantly reduced when they were mated with normal mates. Dominant lethals of varying intensities were induced at 5–20 kR. However, induction of dominant lethality was sex- as well as dose-dependent. Radiation doses inducing 100% dominant lethals in sperm (20 kR) and ova (5 kR) did not mitigate the mating ability of males and receptivity of females. However, receptivity of females was reduced significantly when they were irradiated as pupae at 10 kR. Rates of embryonation in F1 eggs were significantly reduced when normal females were crossed with males irradiated as pupae at 20 kR, but similar effect was observed at 10 kR in reversed crosses. Embryonic development was delayed in eggs obtained from crosses, where male or female parent was irradiated in pupal stage, but in both cases most of the dominant lethals acted late in embryonic development.

Key Words

Maize borer Chilo partellus gamma-radiation pupae embryonic development dominant lethality 

Résumé

Les pupes mâle et femelles âe;gées (5 à 6 jours) de C. partellus ont été irradiées à 5–20 kR et 5–10 kR respectivement. L’irradiation n’effecté pas les éclosions, la survie des pupes et la longevité des adultes. La fécondité des femelles normales accouplés aux des mâles irradiées ne diffère pas significativement du témoln mais les féconditées des femelles irradiées à 10 kR et accouplés avec des mâles non irradiées ont réduites en fonction de la dose. L’induction de létalité dominante a dépendés sur les sex et la dose. Les doses de rayonnements nécessaires pour 100% létalité dominante en des sperms (20 kR) et des oeufs (5 kR) n’effectuées pas des comportement sexuel chez des mâles et des femelles. Les pupes irradiées à la dose de 10 kR a provoqué l’accouplement des femelles. L’embryon des oeufs F1 été rédultes significativement quand la femelles normale été crolssées avec le mâle irradié à la dose de 20 kR a stade de la pupe mais les effets semblable été observées à la dose de 10 kR quand les femelles irradiées été croisées avec des mâles normales. Les développement des embryons sont retardés dans des oeufs obtenir en accouplements des mâles ou des femelles irradiées à la stade de pupes mais en cheque les deux cases létalité dominante devient plus tard.

Mots Clés

Chilo partellus rayonnement gamma pupes développement des embryons létalité dominante 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amoako-Atta B. and Partida G. J. (1975) Influence of pupal age on the response of the almond moth, Carda cautella Walker, to different dosages of gamma irradiation. In Sterility Principles for Insect Control. Proc. Symp. Innsbruck, (1974) IAEA/FAO. pp. 529–536.Google Scholar
  2. Ampofo J. K. O. (1986) Effects of resistance maize cultivars on larval dispersal and establishment of Chilo partellus (Lepidoptera: Pyralidae). Insect Sci. Applic. 7, 103–106.Google Scholar
  3. Bughio A. R. (1976a) Gamma irradiation of eggs of Chilo partellus (Swin.) for the production of sterile males. Z. angew. Entomol. 81, 61–66.CrossRefGoogle Scholar
  4. Bughio A. R. (1976b) Embryonic development and induced dominant lethality in F1 eggs of Chilo partellus (Swin.) Radiat. Res. 67, 299–304.CrossRefGoogle Scholar
  5. Bughio A. R. (1977) Embryonic development and larval hatch following irradiation of eggs of Chilo partellus (Swin.) Z. angew. Entomol. 83, 80–85.CrossRefGoogle Scholar
  6. Bughio A. R. (1988) Parental and inherited sterility induced by gamma radiation in male moths of maize borer, Chilo partellus (Swinhoe). In Modern Insect Control: Nuclear Techniques and Biotechnology. Proc. Int. Symp. Vienna (1987) IAEA/FAO. pp. 413–421.Google Scholar
  7. Bughio A. R., Akbar S. S. and Qureshi Z. A. (1977) Rearing and biology of maize borer, Chilo partellus (Lepidoptera: Pyralidae). Pak. J. Zool. 9, 145–156.Google Scholar
  8. Bughio A. R., Qureshi Z. A. and Akbar S. S. (1976) Sexual characteristics in pupal and adult stages ofChilo partellus (Swinhoe). Pak. J. Sci. Ind. Res. 19, 159–160.Google Scholar
  9. Cheng W. (1969) Components of sterility induced in late stage male pupae of sugarcane grey borer, Eucosma schistaceana (Lepidoptera: Olethreutidae) with gamma-radiation. Ann. Entomol. Soc. Am. 62, 1106–1113.CrossRefGoogle Scholar
  10. Chong K. K. (1984) Major Lepidoptera pests in Asia. In F1Sterility for Control of Lepidoptera Pests, Report of the FAOllAEA Consultant Meeting Vienna. Vienna, pp. 53–77.Google Scholar
  11. Cogburn R. R., Tilton E. W. and Burkholder W. E. (1966) Gross effects of gamma-radiation on Indian meal moth and Angoumois grain moth. J. Econ. Entomol. 59, 682–685.CrossRefGoogle Scholar
  12. Flint H. M. and Kressin E. L. (1967) Gamma-irradiation of pupae of tobacco bud worm. J. Econ. Entomol. 60, 1655–1656.CrossRefGoogle Scholar
  13. FAO (1988) FAO Production Yearbook: Statistics Series No. 82, FAO, Rome, (1988) 41, 113–132.Google Scholar
  14. Grosch D. S. (1973) Environmental aspects of radiation. In The Physiology of Insects (Edited by Rockestein M.), Vol. 2, pp. 85–126. Academic Press, New York.Google Scholar
  15. Henneberry T. J. and Clayton T. E. (1988) Effects of gamma-radiation on pink bollworm (Lepidoptera: Gelechiidae) pupae: Adult emergence, reproduction, mating and longevity of emerged adults and their progeny. J. Econ. Entomol. 81, 322–326.CrossRefGoogle Scholar
  16. Jotwani M. G. (1972) Insect pests: Major limitation in producing higher yields of sorghum. Entomol. Newsl. 2, 75.Google Scholar
  17. Jotwani M. G., Chandra D., Young W. R., Sukhani T. R. and Saxena P. N. (1971) Estimation of avoidable losses caused by insect complex on sorghum hybrid, CSH1 and percentage increase over treated control. Indian J. Entomol. 33, 375–383.Google Scholar
  18. La Chance L. E., Schmidt C. H. and Bushland R. C. (1967) Radiation induced sterilization. In Pest Control: Biological, Physical and Selected Chemical Methods (Edited by Kilgore W. W. and Doutt R. L.), pp. 147–196. Academic Press, New York and London.Google Scholar
  19. La Chance L. E. (1974) Dominant lethal mutations in insects with block holokinetic chromosomes 2. Irradiation of sperm of cabbage looper. Ann. Entomol. Soc. Am. 67, 35–39.CrossRefGoogle Scholar
  20. La Chance L. E. (1975) Induced sterility in irradiated Diptera and Lepidoptera: sperm transfer and dominant lethal mutations. In Sterility Principles for Insect Control. Proc. Symp. Innsbruck (1974) IAEA/FAO Vienna. pp. 401–408.Google Scholar
  21. Mohyuddin A. I. and Attique M. R. (1978) An assessment of loss caused by Chilo partellus to maize in Pakistan. PANS 24, 111–113.CrossRefGoogle Scholar
  22. North D. T. (1975) Inherited sterility in Lepidoptera. A. Rev. Entomol. 20, 167–182.CrossRefGoogle Scholar
  23. Schmutterer H. (1969) Pests of Crops in Northeast and Central Africa. Gustav Fischer Verlag Stuttgart: Port-Land, USA.Google Scholar
  24. Singh B. U. and Rana B. S. (1989) Varietal resistance in sorghum to spotted stem borer, Chilo partellus (Swinhoe). Insect Sci. Applic. 10, 3–27.Google Scholar
  25. Tazima Y. (1960) Considerations on the changes in observed mutation rates in the silkworm after irradiation of various stages of gametogenesis. Jpn. J. Genet. (Suppl.) 36, 50–60.Google Scholar
  26. Walker D. W. and Quintana-Muniz V. (1968) Mortality staging of dominant lethals induced in the F1 generation of sugarcane borer, Diatraea saccharalis (F.). Radiat. Res. 36, 138–143.CrossRefGoogle Scholar

Copyright information

© ICIPE 1992

Authors and Affiliations

  • A. R. Bughio
    • 1
  1. 1.Atomic Energy Agricultural Research CentreTandojamPakistan

Personalised recommendations