Leishmania Parasites and Their Kinetoplast DNA (kDNA)

  • N. N. Massamba
  • M. J. Mutinga
  • B. N. Odero
Research Article


Restriction endonuclease digestion of genomic DNAs from WHO Leishmania reference strains generates prominent kinetoplast DNA (kDNA) fragments ranging from 0.5–2.0 kb. Following fractionation by agarose gel electrophoresis, these DNA fragments were visualized as distinct bands in gels. Using as parameters the presence or absence of the prominent bands and their size and number, the Leishmania reference strains fell into three distinct genomic groups. These genomic groupings were applied to new Leishmania isolates. DNA analysis, involving restriction endonuclease digestion and Southern blot hybridization with probes generated from the prominent DNA bands of reference strains L. major IC-236 and L. major IC-235, cloned in plasmids, showed significant genetic variation within Leishmania and allowed some distinct isolates to be identified.

Key Words

WHO Leishmania reference strains kinetoplast DNA (kDNA) kilobase (kb) DNA probes southern blot hybridization 


La digestion aux enzymes de restriction des ADN génomiques obtenus à partir des souches de référence de Leishmania génère des fragments caractéristiques des ADN (ADN kinétoplastique) dont la taille est comprise entre 0.5–2.0 kb. Le fractionnement par électrophorèse sur gel d’agarose de ces fragments d’ADN révèle des bandes proéminentes distinctes. En se servant comme paramètres, la présence ou l’absence de ces bandes, leur taille et nombre, il a été possible de répartir les souches de référence de Leishmania en trois différents groupes génomiques. L’application de ce mode de partage aux nouveaux isolats est rapportée dans cette étude. L’analyse de l’ADN, faisant intervenir la digestion aux enzymes de restriction, l’hybridation à la Southern avec des sondes préparées à partir des fragments caractéristiques de l’ADN des souches de référence L. major IC-236 et L. major IC-235, clonés dans les plasmides a montré une variation génétique significative au sein des Leishmania et quel ques isolats ont été ainsi identifiés.

Mots Clés

Souches de référence de Leishmania ADN kinétoplastique kilobase (kb) sondes d’ADN hybridation selon southern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnot D. E. and Barker D. C. (1981) Biochemical identification of cutaneous leishmaniasis by analysis of kinetoplast DNA. II. Sequence homologies in Leishmania kDNA. Mol. Biochem. Parasitol. 3, 47–56.PubMedCrossRefGoogle Scholar
  2. Barker D. C. (1980) The ultrastructure of kinetoplast DNA with particular reference to the interpretation of darkfield electron microscopy images of isolated purified networks. Micron 11, 21–62.Google Scholar
  3. Barker D. C. (1987) DNA diagnosis of human leishmaniasis. Parasitol. Today 3, 177–184.PubMedCrossRefGoogle Scholar
  4. Barker D. C. (1989) Molecular approaches to DNA diagnosis. Parasitology 99, S125–S146.PubMedCrossRefGoogle Scholar
  5. Barker D. C. and Arnot D. E. (1981) Biochemical identification of cutaneous leishmaniasis by analysis of kinetoplast DNA. I. Ultrastructure and buoyant density analysis. Mol. Biochem. Parasitol. 3, 33–46.PubMedCrossRefGoogle Scholar
  6. Barker D. C., Arnot D. E. and Butcher J. (1982) DNA characterization as a taxonomic tool for identification of kinetoplastic flagellate protozoans. In Proceedings of the Workshop of the Pan American Health Organization. Biochemical Characterization of Leishmania. Washington, DC (1982) (Edited by Chance M. L. and Walton B. C.), pp. 139–180. UNDP/ World Bank/WHO, Geneva.Google Scholar
  7. Barker D. C. and Butcher J. (1983) The use of DNA probes in the identification of Leishmania: discrimination between isolates of the Leishmania mexicana and L. braziliensis complexes. Trans. R. Soc. Trop. Med. Hyg. 77, 285–297.PubMedCrossRefGoogle Scholar
  8. Barker D. C., Gibson L. J., Kennedy W. P. K., Nasser A. and Williams R. H. (1986) The potential of using recombinant DNA species-specific probes for the identification of tropical leishmaniases. Parasitology 91, S139–S174.CrossRefGoogle Scholar
  9. Bray R. S., Ashford R. W. and Bray M. A. (1973) The parasite causing cutaneous leishmaniasis in Ethiopia. Trans. R. Soc. Trop. Med. Hyg. 67, 345–348.PubMedCrossRefGoogle Scholar
  10. Beach R., Kiilu G., Hendricks L. D., Oster C. N. and Leeuwenburg J. (1984) Cutaneous leishmaniasis in Kenya: transmission of Leishmania major to man by the bite of naturally infected Phlebotomus duboscqi. Trans. R. Soc. Trop. Med. Hyg. 78, 747–751.PubMedCrossRefGoogle Scholar
  11. Borst P. and Hoeijmakers J. H. J. (1979) Kinetoplast DNA (Review). Plasmid 2, 20–40.PubMedCrossRefGoogle Scholar
  12. Borst P., Fase-Fowler F., Weijers P. J., Barry D. J., Tetley L. and Vickerman K. (1985) Kinetoplast DNA from Trypanosoma vivax and T. congolense. Mol. Biochem. Parasitol. 15, 129–142.PubMedCrossRefGoogle Scholar
  13. Chance M. L., Schnur L. F., Thomas S. C. and Peters W. (1978) The biochemical and serological taxonomy of Leishmania from Aethiopian zoogeographical region. Ann. Trop. Med. Parasitol. 72, 533–542.PubMedCrossRefGoogle Scholar
  14. Denhardt D. T. (1966) A membrane-filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Comm. 23, 641–646.PubMedCrossRefGoogle Scholar
  15. Fendall N. R. E. (1952) Kala-azar in East Africa with particular reference to Kenya and Kamba country, I and II. J. Trop. Med. Hyg. 55, 193–204.PubMedGoogle Scholar
  16. Gardener P. J. and Howells R. E. (1972) Isoenzyme variation in leishmanial parasites. J. Protozool. 19, (supplement), 47.Google Scholar
  17. Gardener P. J., Chance M. L. and Peters W. (1974) Biochemical taxonomy of Leishmania II. Electrophoretic variation of malate dehydrogenase. Ann. Trop. Parasitol. 68, 317–325.CrossRefGoogle Scholar
  18. Gibson W., Borst P. and Fase-Fowler F. (1985) Further analysis of intraspecific variation in Trypanosoma brucei using restriction site polymorphisms in the maxicircle of kinetoplast DNA. Mol. Biochem. Parasitol. 15, 21–36.PubMedCrossRefGoogle Scholar
  19. Gomez-Eichelman C. M., Holz G. Jr, Beach D., Simpson A. M. and Simpson L. (1988) Comparison of several lizard Leishmania species and strains in terms of kinetoplast minicircle and maxicircle DNA sequences, nuclear chromosomes, and membrane lipids. Mol. Biochem. Parasitol. 27, 143–158.CrossRefGoogle Scholar
  20. Grimaldi G. Jr, Momen H., Soares M. J. and Moriearty P. L. (1982) Enzyme variation and difference in infectivity within a single strain of Leishmania mexicana. Int. J. Parasitol. 12, 185–189.PubMedCrossRefGoogle Scholar
  21. Grunstein M. and Hogness D. (1975) Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. (USA). 72, 3961–3965.PubMedCentralCrossRefGoogle Scholar
  22. Ho M., Leeuwenburg J., Mbugua A., Wamachi A. and Voller A. (1983) An enzyme-linked immunosorbent assay (Elisa) for field diagnosis of visceral leishmaniasis. Am. J. Trop. Med. Hyg. 32, 943–946.PubMedCrossRefGoogle Scholar
  23. Hoeijmakers J. H. J., Borst P., Van de Burg J., Weismann C. and Cross G. A. M. (1980) The isolation of plasmids containing DNA complementary to messenger RNA for variant surface glycoproteins of Trypanosome brucei. Gene 8, 391–417.PubMedCrossRefGoogle Scholar
  24. Jackson P. R., Wohlhieter J. A., Jackson J. E., Sayles P., Diggs C. L. and Hockmeyer W. T. (1984) Restriction endonuclease analysis of Leishmania kinetoplast DNA characterizes parasites responsible for visceral and cutaneous disease. Am. J. Trop. Hyg. 33, 808–819.CrossRefGoogle Scholar
  25. Jackson P. R., Lawrie J. M., Stiteler J. M., Hawkins D. N., Wohlhieter J. A. and Rowton E. D. (1986) Detection and characterization of Leishmania species and strains from mammals and vectors by hybridization and restriction endonuclease digestion of kinetoplast DNA. Vet. Parasitol. 20, 195–215.PubMedCrossRefGoogle Scholar
  26. Jaffe C. L. and Zallis M. (1988) Use of purified parasite proteins from Leishmania donovani for rapid serodiagnosis of visceral leishmaniasis. J. Infect. Dis. 157, 1212–1220.PubMedCrossRefGoogle Scholar
  27. Kaddu J. B. and Mutinga M. J. (1984) Leishmania in Kenyan Phlebotomine sandflies — II. Natural infection in the malpighian tubules of Sergentomyia garnhami and Sergentomyia antennatus. Insect Sci. Applic. 5, 239–243.Google Scholar
  28. Kaddu J. B., Mutinga M. J., Chimtawi M., Okot-Kotber B. M., Nyamori M. P. and Musyoki R. (1988) Leishmania in Kenyan Phlebotomine sandflies — V. Leishmania aethiopica in the oesophagus of Phlebotomus pedifer. Insect Sci. Applic. 9, 117–121.Google Scholar
  29. Kungu A., Mutinga M. J. and Ngoka J. M. (1972) Cutaneous leishmaniasis in Kenya. East Afr. Med. J. 49, 458–465.Google Scholar
  30. Laurent M., Van Assel S. and Steinert M. (1971) Kinetoplast DNA. A unique macromolecular structure of considerable size and mechanical resistance. Bioch. Biophys. Res. Com. 43, 278–284.CrossRefGoogle Scholar
  31. Lawrie J. M., Jackson P. R., Stiteler J. M. and Hockmeyer W. T. (1985) Identification of pathogenic Leishmania promastigotes by DNA:DNA hybridization with kinetoplast DNA cloned in E. coli plasmids. Am. J. Trop. Med. Hyg. 34, 257–265.PubMedCrossRefGoogle Scholar
  32. Le Blancq S. M., Schnur L. F. and Peters W. (1986) Leishmania in the Old World: 1. The geographical and hostal distribution of L. major zymodemes. Trans. R. Soc. Trop. Med. Hyg. 80, 99–112.CrossRefGoogle Scholar
  33. Lopez U. G. and Wirth D. F. (1986) Identification of visceral Leishmania species with cloned sequences of kinetoplast DNA. Mol. Biochem. Parasitol. 20, 77–84.CrossRefGoogle Scholar
  34. Mackinnon J. A. and Fendal N. R. E. (1955) Kalaazar in Baringo District of Kenya. J. Trop. Med. Hyg. 58, 205–209.Google Scholar
  35. Maniatis T., Fritsch E. F. and Sambrook J. (1982) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, New York.Google Scholar
  36. McMahon-Pratt D., Bennett E. and David J. R. (1982) Monoclonal antibodies that distinguish subspecies of Leishmania braziliensis. J. Immunol. 129, 926–927.PubMedGoogle Scholar
  37. Mebrahtu Y., Oster C.N., Sharty A.M., Hendricks L. D., Githure J. I., Rees P. H., Perkins P.V., Leeuwenburg J. (1987) Cutaneous leishmaniasis caused by Leishmania tropica in Kenya. Trans. R. Soc. Trop. Med. Hyg. 81, 923–924.PubMedCrossRefGoogle Scholar
  38. Mebrahtu Y., Lawyer P., Githure J., Kager P., Leeuwenburg J., Perkins P., Oster C. and Hendricks L. (1988) Indigenous human cutaneous leishmaniasis caused by Leishmania tropica in Kenya. Am. J. Trop. Med. Hyg. 39, 267–273.PubMedCrossRefGoogle Scholar
  39. Mebrahtu Y., Lawyer P., Githure J., Were J. B. O., Muigai R., Hendricks L., Leeuwenburg J., Koech D. and Roberts C. (1989) Visceral leishmaniasis unresponsive to pentostam caused by Leishmania tropica in Kenya. Am. J. Trop. Med. Hyg. 41, 289–294.PubMedCrossRefGoogle Scholar
  40. Mebrahtu Y., Lawyer P., Hendricks L., Oster C., Perkins P., Koech D., Pamba H. and Roberts C. (1990) Concurrent infection with Leishmania donovani and Leishmania major in a Kenyan patient. Am. J. Trop. Med. Hyg. In press.Google Scholar
  41. Miles M. A., Povoa M. M., De Souza A. A., Lainson R. and Shaw J. J. (1980) Some methods for enzymic characterization of Latin-American Leishmania with particular reference to Leishmania mexicana amazonensis and subspecies of Leishmania hertigi. Trans. R. Soc. Trop. Med. Hyg. 74, 243–252.PubMedCrossRefGoogle Scholar
  42. Minter D. M. and Wijers J. B., Heisch R. B. and Manson-Bahr P. E. C. (1962) Phlebotomus martini — a probable vector of kala-azar in Kenya. Brit. Med. J. 2, 285.CrossRefGoogle Scholar
  43. Muigai R., Githure J. I., Gachihi G. S., Were J. B. O., Leeuwenburg J. and Perkins P. V. (1987) Cutaneous leishmaniasis caused by Leishmania major in Baringo District, Kenya. Trans. R. Soc. Trop. Med. Hyg. 81, 600–602.CrossRefGoogle Scholar
  44. Mutinga M.J. and Ngoka J.M. (1970) Culture isolation and description of cutaneous leishmaniasis in Kenya. Proc. E. Afr. Med. Res. Council 4, 72–74.Google Scholar
  45. Mutinga M. J. and Ngoka J. M. (1978) Incrimination of the vector of visceral leishmaniasis in Kenya. East Afr. Med. J. 55, 337–340.PubMedGoogle Scholar
  46. Mutinga M. J. (1986) Epidemiology of leishmaniases in Kenya. Advances in research of vectors and animal reservoirs and possible control measures. Insect Sci. Applic. 7, 199–206.Google Scholar
  47. Mutinga M. J. and Odhiambo T. R. (1986) Cutaneous leishmaniasis in Kenya — II. Studies on vector potential of Phlebotomies pedifer (Diptera:Phlebotominae) in Kenya. Insect Sci. Applic. 7, 171–174.Google Scholar
  48. Mutinga M. J., Mutero C. M., Ngindu A., Amimo F. A. (1988) The isolation of leishmanial parasites from domestic goats and wild hosts and possible role of goats as reservoirs of leishmaniases. Insect Sci. Applic. 9, 339–344.Google Scholar
  49. Mutinga M. J., Kihara S. M., Lohding A., Mutero C. M., Ngatia T. A. and Karanu F. (1989) Leishmaniasis in Kenya: description of leishmaniasis of a domestic goat from Transmara, Narok District, Kenya. Trop. Med. Parasitol. 40, 91–96.Google Scholar
  50. Okot-Kotber B. M. (1985) A rapid chromatographic method for elimination of fungal contamination in in vitro cultures of Leishmania spp. Parasitology 91, 1–7.CrossRefGoogle Scholar
  51. Okot-Kotber B. M., Mutinga M. J. and Kaddu J. B. (1989) Biochemical characterization of Leishmania spp. isolated from man and wild animals in Kenya. Int. J. Parasitol. 19, 657–663.CrossRefGoogle Scholar
  52. Rigby P. W. J., Dickmann M., Rhodes C. and Berg P. (1977) Labelling deoxyribonucleic acid to high specific activity in vitro nick translation with DNA polymerase I. J. Mol. Biol. 113, 237–251.PubMedCrossRefGoogle Scholar
  53. Riou G. and Detain E. (1969) Electron microscopy of the circular kinetoplast DNA from Trypanosoma cruzi: occurrence of catenated forms. Biochemistry 62, 210–217.Google Scholar
  54. Rogers W. O., Bumheim P. F. and Wirth D. F. (1988) Detection of Leishmania within sandflies by kinetoplast DNA hybridization. Am. J. Trop. Med. Hyg. 39, 434–439.PubMedCrossRefGoogle Scholar
  55. Rogers W. O. and Wirth D. F. (1988) Generation of sequence diversity in the kinetoplast DNA minicircles of Leishmania mexicana amazonensis. Mol. Biochem. Parasitol. 30, 1–8.PubMedCrossRefGoogle Scholar
  56. Schottelius J. (1982) Lectin binding strain-specific carbohydrates on the cell surfaces of Leishmania strains from the Old World. Z. Parasitenk. 66, 237–247.CrossRefGoogle Scholar
  57. Southern E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 501–517.CrossRefGoogle Scholar
  58. Spithill T. W. and Grumont R. J. (1984) Identification of species, strains and clones of Leishmania by characterization of kinetoplast DNA minicircles. Mol. Biochem. Parasitol. 12, 217–236.PubMedCrossRefGoogle Scholar
  59. Van Eys G. J. J. M., Schoone G. J., Ligthart G. S., Alvar J., Evans D. A. and Terpstra W. J. (1989) Identification of “Old World” Leishmania by DNA recombinant probes. Mol. Biochem. Parasitol. 34, 53–62.PubMedCrossRefGoogle Scholar
  60. Wahl G. M., Stern M. and Stark G. R. (1979) Efficient transfer of large DNA fragments from agarose gels to diazobenzyl oxymethyl-paper and rapid hybridization using dextran sulfate. Proc. Natl. Acad. Sci. (USA) 76, 3683–3687.CrossRefGoogle Scholar
  61. Wirth D. F. and McMahon-Pratt D. (1982) Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions. Proc. Natl. Acad. Sci. (USA) 79, 6999–7003.CrossRefGoogle Scholar

Copyright information

© ICIPE 1992

Authors and Affiliations

  • N. N. Massamba
    • 1
  • M. J. Mutinga
    • 1
  • B. N. Odero
    • 1
  1. 1.The International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya

Personalised recommendations