Advertisement

International Journal of Tropical Insect Science

, Volume 10, Issue 6, pp 751–769 | Cite as

A Review of the Progress Made in Recent Years on Research and Understanding of Immunity in Insect Vectors of Human and Animal Diseases

  • Godwin P. Kaaya
Review A Ten Year Perspective of Insect Science 1980–1989

Abstract

Different modes of immune reactions of insect vectors of human and animal diseases to nematode and protozoan parasites, fungi, bacteria, viruses and to other biological materials e.g. xenografts are discussed in this paper. Since most of the insect vectors of diseases are adult dipterans with low numbers of circulating haemocytes, their mode of defence against metazoan parasites and fungal pathogens is primarily by means of humoral encapsulation, with little haemocyte participation. Although earlier workers reported that humoral capsules in dipterans were formed without direct participation by haemocytes, this paper reveals increasing evidence of cellular involvement in the formation of humoral capsules, both at the initial and terminal stages of the encapsulation process. The role of phenoloxidase system in non-self recognition and in the process of melanization of haemolymph and capsules formed around parasites and fungal pathogens is also discussed. Immune defence of insect vectors against bacterial invasion by means of haemocytic reactions e.g. phagocytosis and nodule formation and by synthesis and release of humoral antibacterial factors e.g. lysozyme, attacins and cecropins is described and compared with similar reactions reported to occur in other insects. The role of lectins in defence of insect vectors against the parasites they transmit e.g. sandflies against Leishmania, blackflies against Onchocerca and tsetse against Trypanosomes is discussed and the possible mechanisms by which some parasites evade recognition and attack by the vector immune systems are also briefly discussed.

Key Words

Immunity vectors phagocytosis nodule formation cellular encapsulation humoral encapsulation lysozyme attacins cecropins phenoloxidase melanization lectins 

Mots Clefs

Immunité vecteurs phagocytose formation de nodules encapsulation cellulaire encapsulation humorale lysosome attacines cecropines phenoloxidase mélanisation lectines 

Résumé

Les différents modes de réactions immunisées des insectes vecteurs de maladies humaines et animales contre les nématodes et les protozoaires parasites, les champignons les bactéries, les viruses et autres matériels biologiques par exemple xenogratis sont discutés dans cette publication. Comme plus d’ insectes vecteurs de maladies sont des diptères adultes ayant un nombre inférieur d’hemocytes, leur mode de défense contre les métazoaires parasites et les champignons pathogènes est principalement par moyen d’encapsulation humorale, avec une moindre participation d’hemocyte. Bien que des recherches antérieures ont montré que les capsules humorales chez les diptères étaient formées sans participation directe d’hemocytes, cette publication révèle une évidence accrue sur la participation cellulaire dans la formation des capsules humorales, au niveau initial et final du processus d’encapsulation. Le rôle du système phenoloxidase dans le processus de melanisation d’hémolymphe et les capsules formées autour des parasites et des champignons pathogènes est aussi discuté. La défense immunisée des insectes vecteurs contre l’invasion bactérienne par moyen de réactions hémocytaire par exemple la phagocytose et la formation de nodules et par la synthèse et la liberation des éléments antibactériens humoraux par example lysosomes, attacines et cecropines est décrite et comparée aux réaction apparues chez d’autres insectes. Le rôle de lectines dans la défense des insectes vecteurs contre les parasites qu’ils transmettent par exemple les phlébotomes contre Leishmania, les slmulies contre l’Onchocerca et les mouches tsé-tsé contre Trypanosoma est discuté. Les mecanismes possibles par lesquels certains parasites échappent d’être reconnues et attaqués par les systèmes vecteurs “immunisés” sont aussi brièvement discutés.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amouriq L. (1960) Formules hemocytaires de la larve de la nymphe et de l’adulte de Culex hortensis (Dipt. Culicidae). Bull. Soc. Entomol. (France) 65, 135–139.Google Scholar
  2. Andreadis T.G. and Hall D.W. (1976) Neoaplectana carpocapsae: Encapsulation in Aedes aegypti and the changes in host hemocyte and hemolymph proteins. Exp. Parasitol. 39, 252–261.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bhat U.K.M. and Singh K.R.P. (1975) The haemocytes of the mosquito Aedes albopictus and their comparison with larval cells cultured in vitro. Experientia 31, 1331–1332.CrossRefGoogle Scholar
  4. Bishop D.H.L. and Beaty B.J. (1986) Inteference-immunity of mosquitoes to bunyavirus superinfection. In Immune Mechanisms in Invertebrate Vectors (Edited by Lackie A.M.), pp. 95–115, Clarendon Press, Oxford.Google Scholar
  5. Bitkowska E., Dzbenski T.H., Szadziewska M. and Wegner Z. (1982) Inhibitions of xenograft rejection reaction in the bug Triatoma infestans during infection with a protozoan, Trypanosoma cruzi. J. Invertebr. Pathol. 40, 186–189.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Boman H.G. and Hultmark D. (1987) Cell-free immunity in insects. A. Rev. Microbiol. 41, 103–126.CrossRefGoogle Scholar
  7. Bradley T.J. and Nayar J.K. (1985) Intracellular melanization of the larvae of Dirofilaria immitis in the malpighian tubules of the mosquito Aedes sollicitans. J. Invertebr. Pathol. 45, 339–345.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Brey P.T., Lebrum R.A., Papierok B., Ohayon H., Vennavalli S. and Hafez J. (1988) Defense reactions by larvae of Aedes aegypti during infection by the aquatic fungus Lagenidium giganteum (Oomycete). Cell Tissue Res. 253, 245–250.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bronskin J.F. (1962) Encapsulation of rhabditoid nematodes in mosquitoes. Can. J. Zool. 40, 1269–1275.CrossRefGoogle Scholar
  10. Cameron G.R. (1934) Inflammation in the caterpillars of Lepidoptera. J. Pathol. Bacterial. 38, 441–466.CrossRefGoogle Scholar
  11. Chaithong U. and Townson H. (1989) Immune responses of mosquitoes to filariae and bacteria. Proc. Int. Symp. Mol. Ins. Sci., October 22–27, Tucson, Arizona, USA p.17.Google Scholar
  12. Chen C.C. and Laurence B.R. (1985) An ultrastructural study on the encapsulation of microfilariae of Brugia pahangi in the haemocoel of Anopheles quadrimaculatus. Int. J. Parasitol. 15, 421–428.PubMedCrossRefGoogle Scholar
  13. Christensen B.M. and Forton K.F. (1986) Hemocyte-mediated melanization of microfilariae in Aedes aegypti. J. Parasitol. 72, 220–225.PubMedCrossRefGoogle Scholar
  14. Christensen B.M. and Lafond M.M. (1986) Parasite-induced suppression of the immune response in Aedes aegypti by Brugia pahangi. J. Parasitol. 72, 216–219.PubMedCrossRefGoogle Scholar
  15. Christensen B.M., Lafond M.M. and Christensen L.A. (1986) Defense reactions of mosquitoes to filarial worms: Effect of host age on the immune response to Dirofilaria immitis microfilariae. J. Parasitol. 72, 212–215.PubMedCrossRefGoogle Scholar
  16. Christensen B.M., Sutherland D.R. and Gleason L.N. (1984) Defence reactions of mosquitoes to filarial worms: Comparative studies on the response of three different mosquitoes to inoculated Brugia pahangi and Dirofilaria immitis microfilariae. J. Invertebr. Pathol. 44, 267–274.PubMedCrossRefGoogle Scholar
  17. Collins F.H., Sakai R.K., Vernick K.D., Paskewitz S., Seeley D. C., Miller L.H., Collins W.E., Campbell C.C. and Gwadz R.W. (1986) Genetic selection of aplasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234, 607–609.PubMedCrossRefGoogle Scholar
  18. Croft S. L., East J.S. and Molyneux D.H. (1982) Anti-trypanosomal factor in the haemolymph of Glossina. Acta Trop. (Basel) 39, 293–302.PubMedGoogle Scholar
  19. Dalhammar G. and Steiner H. (1984) Characterization of inhibitor A—A protease from Bacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects. Eur. J. Biochem. 139, 247–252.PubMedCrossRefGoogle Scholar
  20. Dimarcq J.L., Keppi E., Dunbar B., Lambert J., Reichmart J.M., Hoffmann D., Rankine S.M., Fothergill J.E. and Hoffmann J.A. (1988) Insect immunity: Purification and characterization of a family of novel inducible antibacterial proteins from immunized larvae of the dipteran Phormia terranovae and complete amino-acid sequence of the predominant member, diptericin A. Eur. J. Biochem. 171, 17–22.PubMedCrossRefGoogle Scholar
  21. Dimarcq, J.L., Reichhart J. M., Lambert J., Wicker C., Hoffmann J. and Hoffmann D. (1989) Insect immunity: Molecular characterization of Diptericins and insect defensins, two families of induced antibacterial peptides from the dipteran Phormia terranovae. Int. Symp. Molec. Ins. Sci. October 22–27, Tucson, Arizona, USA, p. 28.Google Scholar
  22. Distelmans W., D’Haeseleer F., Kaufman L. and Rousseeuw P. (1982) The susceptibility of Glossina palpalis palpalis at different ages to infection with Trypanosoma congolense. Ann. Soc. Belg. Med. Trop. 62, 41–47.PubMedGoogle Scholar
  23. Drif L. and Brehelin M. (1983) The circulating hemocytes of Culex pipiens and Aedes aegypti: Cytology, histochemistry, hemograms and functions. Dev. Comp. Immunol. 7, 687–690.CrossRefGoogle Scholar
  24. Dunn P.E. (1986) Biochemical aspects of insect immunology. Annu. Rev. Entomol. 31, 321–339.CrossRefGoogle Scholar
  25. East J., Molyneux D.H. and Hillen N. (1980) Haemocytes of Glossina. Ann. Trop. Med. Parasitol. 74, 471–474.PubMedCrossRefGoogle Scholar
  26. East J., Molyneux D.H., Maudlin I. and Dukes P. (1983) Effect of Glossina haemolymph on salivarian trypanosomes in vitro. Ann. Trop. Med. Parasitol. 77, 97–99.PubMedCrossRefGoogle Scholar
  27. Elce B.J. (1971) The transmission of Trypanosoma congolense through Glossina morsitans and the white mouse. Trans. R. Soc. Trop. Med. Hyg. 65, 239.CrossRefGoogle Scholar
  28. Elce B.J. (1974) The development of salivarian trypanosomes in Glossina morsitans and small laboratory animals. Trans. R. Soc. Trop. Med. Hyg. 68, 162.Google Scholar
  29. Esslinger J.H. (1962) Behaviour of microfilariae of Brugia pahangi in Anopheles quadrimaculatus. Am. J. Trop. Med. Hyg. 1, 749–758.CrossRefGoogle Scholar
  30. Foley D.A. (1978) Innate cellular defence by mosquito hemocytes. In Comparative Pathobiology (Edited by Bulla A.L. Jr. and Cheng T.C.), pp. 113–144, New York, Plenum Press 4.Google Scholar
  31. Forton K.F., Christensen B.M. and Sutherland D.R. (1985) Ultrastructure of the melanization response of Aedes trivittatus against inoculated Dirofilaria immitis microfilariae. J. Parasitol. 71, 331–341.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gagen S.J. and Ratcliffe N.A. (1976) Studies on the in vivo cellular reactions and fate of injected bacteria in Galleria mellonella and Pieris brassicae larvae. J. Invertebr. Pathol. 28, 17–24.CrossRefGoogle Scholar
  33. Gooding L.G., Green D.G., Guy M.W. and Voller A. (1972) Immunosuppression during trypanosomiasis. Br. J. Exp. Pathol. 53, 40–43.Google Scholar
  34. Götz P. (1986) Mechanisms of encapsulation in dipteran hosts. In Immune Mechanisms in Invertebrate Vectors (Edited by Lackie A.M), pp. 1–19, Clarendon Press, Oxford.Google Scholar
  35. Götz P., Roettgen I. and Lingg W. (1977) Encapsulement humoralen tant que reaction de defense chez les Dipteres. Ann. Parasitol. Hum. Comp. 52, 95–97.CrossRefGoogle Scholar
  36. Götz P. and Vey A. (1974) Humoral encapsulation in Diptera (Insecta): Defence reaction of Chironomus larvae against fungi. Parasitol. 68, 1–13.CrossRefGoogle Scholar
  37. Greenwood B.M., Whittle H.C and Molyneux D.H. (1973) Immunosuppression in Gambian trypanosomiasis. Trans. R. Soc. Trop. Med. Hyg. 67, 846–850.PubMedCrossRefGoogle Scholar
  38. Grimstone A.V., Rotheram S. and Salt G. (1967) An electron microscope study of capsule formation by insect blood cells. J. Cell Sci. 2, 281–292.PubMedGoogle Scholar
  39. Ham P.J. and Garms R. (1988) The relationship between innate susceptibility to Onchocerca and haemolymph attenuation of microfilarial motility in vitro using British and West African blackflies. Trop. Med. Parasitol. 39, 230–234.PubMedPubMedCentralGoogle Scholar
  40. Ham P.J., Zulu M.B. and Zahedi M. (1988) In vitro haemagglutination and attenuation of microfilarial motility by haemolymph from individual blackflies (Simulium ornatum) infected with Onchocerca lienalis. Med. Vet. Entomol. 2, 7–18.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Harley J. (1971) The influence of the age of the fly at the time of the infecting feed on infecting of Glossina fuscipes with Trypanosoma rhodesiense. Ann. Trop. Med. Parasitol. 65, 191–196.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Harley J.M.B. and Wilson A.J. (1968) Comparison between Glossina morsitans, G. pallidipes and G. fuscipes as vectors of trypanosomes of the Trypanosoma congolense group: The proportions infected experimentally and the number of the infective organisms extruded during feeding. Ann. Trop. Med. Parasitol. 62, 178–187.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Harmsen R. (1973) The nature of the establishment barrier for Trypanosoma brucei in the gut of Glossina pallidipes. Trans. R. Soc. Trop. Med. Hyg. 67, 364–373.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Harris K.L., Christensen B.M. and Miranpuri G.S. (1986) Comparative studies on the melanization response of male and female mosquitoes against microfilariae. Dev. Comp. Immunol. 10, 305–310.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Ho B.C., Yap E.H. and Singh M. (1982) Melanization and encapsulation in Aedes aegypti and Aedes togoi in response to parasitization by a filarioid nematode (Breinlia booliati.) Parasitol. 85, 567–575.CrossRefGoogle Scholar
  46. Ibrahim E.A.R., Ingram G.A. and Molyneux D.H. (1984) Haemagglutinins and parasite agglutinins in haemolymph and gut of Glossina. Tropenmed. Parasitol. 35, 151–156.PubMedPubMedCentralGoogle Scholar
  47. Ingram G.A., East J. and Molyneux D. H. (1983) Agglutinins of Trypanosoma, Leishmania and Crithidia in insect haemolymph. Dev. Comp. Immunol. 7, 649–652.CrossRefGoogle Scholar
  48. Ingram G.A., East J. and Molyneux D.H. (1984) Naturally occurring agglutinins against trypanosomatid flagellates in the haemolymph of insects. Parasitol. 89, 435–451.CrossRefGoogle Scholar
  49. Jones J.C. (1953) On the heart in relation to circulation of hemocytes in insects. Ann. Entomol. Soc. Am. 46, 366–372.CrossRefGoogle Scholar
  50. Jones J.C. (1958) Heat fixation and the blood cells of Aedes aegypti larvae. Anat. Ree. 132, 461.Google Scholar
  51. Kaaya G.P., Boman H.G. and Flyg C. (1987) Insect immunity: Induction of cecropin and attacin-like antibacterial factors in the haemolymph of Glossina morsitans morsitans. Insect Biochem. 17, 309–315.CrossRefGoogle Scholar
  52. Kaaya G.P. and Darji N. (1988) The humoral defence system in tsetse: Differences in response due to age, sex and antigen types. Dev. Comp. Immunol. 12, 255–268.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kaaya G.P. and Otieno L.H. (1981) Haemocytes of Glossina: I. Morphological classification and the pattern of change with age of the flies. Insect Sci. Applic. 2, 175–180.Google Scholar
  54. Kaaya G.P. and Ratcliffe N.A. (1982) Comparative study of haemocytes and the associated cells of some medically important Dipterans. J. Morphol. 173, 351–365.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kaaya G.P., Ratcliffe N.A. and Alemu P. (1986a) Cellular and humoral defenses of Glossina (Diptera: Glossinidae): Reactions against bacteria, trypanosomes and experimental implants. J. Med. Entomol. 23, 30–43.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kaaya G.P., Otieno L.H., Darji N. and Alemu P. (1986b) Defense reactions of Glossina morsitans morsitans against different species of bacteria and Trypanosoma brucei brucei. Acta Trop. 43, 31–42.PubMedPubMedCentralGoogle Scholar
  57. Keppi E., Zachary D., Robertson M., Hoffmann D. and Hoffmann J.A. (1986) Inducible antibacterial proteins in the haemolymph of Phormia terranovae (Diptera ). Purification and possible origin of one protein. Insect Biochem. 16, 395–402.CrossRefGoogle Scholar
  58. Kirschbaum J.B. (1985) Potential implication of genetic engineering and other biotechnologies to insect control. Annu. Rev. Entomol. 30, 51–70.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kockum K., Faye I., Hofsten P.V., Lee J.Y., Xanthopoulos K.G. and Boman H.G. (1984) Insect immunity: Isolation and sequence of two cDNA clones corresponding to acidic and basic attacins from Hyalophora cecropia. EMBO J. 3, 2071–2075.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Komano H. and Natori S. (1985) Participation of Sarcophaga peregrina humoral lectin in the lysis of sheep red blood cells injected into the abdominal cavity of larvae. Dev. Comp. Immunol. 9, 31–40.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lafond M.M., Christensen B.M. and Lasee B.A. (1985) Defense reactions of mosquitoes to filarial worms: Potential mechanism for avoidance of the response by Brugia pahangi microfilariae. J. Invertebr. Pathol. 46, 26–30.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lee J.Y., Edlund T., Ny T., Faye I. and Boman H.G. (1983) Insect immunity: Isolation of cDNA clones corresponding to attacins and immune protein P4 from Hyalophora cecropia. EMBO J. 2, 577–581.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Matsumoto N., Okada M., Takahashi H., Ming Q. X., Nakajima Y. (1986) Molecular cloning of a cDNA and assignment of the C-terminal of sarcotoxin 1A, a potent antibacterial protein of Sarcophaga peregrina. Biochem. J. 239, 717–722.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Maudlin I. and Ellis D.S. (1985) Association between intracellular rickettsial-like infections of midgut cells and susceptibility to trypanosome infection in Glossina spp. Z. Parasiten. 71, 683–687.CrossRefGoogle Scholar
  65. Maudlin I., Kabayo J.P., Flood M.E.T. and Evans D.A. (1984) Serum factors and the maturation of Trypanosoma congolense infections in Glossina morsitans. Z. Parasiten. 70, 11–19.CrossRefGoogle Scholar
  66. Maudlin I. and Welburn S.C. (1987) Lectin mediated establishment of midgut infections of Trypanosoma congolense and Trypanosoma brucei in Glossina morsitans. Trop. Med. Parasitol. 38, 167–170.PubMedPubMedCentralGoogle Scholar
  67. Maudlin I. and Welburn S.C. (1988a) The role of lectins and trypanosome genotype in the maturation of midgut infections in Glossina morsitans. Trop. Med. Parasitol. 39, 56–58.PubMedPubMedCentralGoogle Scholar
  68. Maudlin I. and Welburn S.C. (1988b) Tsetse immunity and the transmission of trypanosomiasis. Parasitol. Today 4, 109–111.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Moloo S.K. and Shaw M.K. (1989) Rickettsial infections of midgut cells are not associated with susceptibility of Glossina morsitans centralis to Trypanosoma congolense infection. Acta Trop. 46, 223–227.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Molyneux D.H., Takle G., Ibrahim E.A. and Ingram G.A. (1986) Insect immunity to trypanosomatidae. In Immune Mechanisms in Invertebrate Vectors (Edited by Lackie A.M.), pp. 117–144, Clarendon Press, Oxford.Google Scholar
  71. Mshelbwala A.S. (1972) Trypanosoma brucei in the haemocoele of tsetse flies. Trans. R. Soc. Trop. Med. Hyg. 66, 637–643.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Natori S. (1977) Bactericidal substance induced in the haemolymph of Sarcophaga peregrina larvae. J. Insect Physiol. 23, 1169–1173.CrossRefGoogle Scholar
  73. Okada M. and Natori S. (1985a) Ionophore activity of Sarcotoxin I, a bactericidal protein of Sarcophaga peregrina. Biochem J. 229, 453–458.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Okada M. and Natori S. (1985b) Primary structure of Sarcotoxin I, an antibacterial protein induced in the haemolymph of Sarcophaga peregrina (Flesh fly) larvae. J. Biol. Chem. 260, 7174–7177.PubMedPubMedCentralGoogle Scholar
  75. Orihel T.C. (1975) The peritrophic membrane: Its role as a barrier to infection of the arthropod host. In Invertebrate Immunity (Edited by Maramorosch K. and Shope R.E.), pp. 65–73, Academic Press, Inc., New York, San Francisco, London.CrossRefGoogle Scholar
  76. Otieno L.H. (1973) Trypanosoma (Trypanozoon) brucei in the haemolymph of experimentally infected young Glossina morsitans. Trans. R. Soc. Trop. Med. Hyg. 67, 886–887.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Otieno L.H., Darji N. and Onyango P. (1976) Development of Trypanosoma (Trypanozoon) brucei in Glossina morsitans inoculated into the tsetse haemocoele. Acta Trop. (Basel) 33, 143–150.PubMedPubMedCentralGoogle Scholar
  78. Pendland J.C., Heath M.A. and Boucias D.G. (1988) Function of a galactose-binding lectin from Spodoptera exigua larval haemolymph: Opsonization of blastospores from entomogenous hyphomycetes. J. Insect Physiol. 34, 533–540.CrossRefGoogle Scholar
  79. Pereira M.E.A., Andrade A.F.B. and Ribeiro J.M.C. (1981) Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi. Science N.Y. 211, 597–600.CrossRefGoogle Scholar
  80. Pereira M.E., Loures M.A., Villalta F. and Andrade A.F.B. (1980) Lectin receptors as markers for Trypanosoma cruzi: Developmental stages and a study of the interaction of wheat germ agglutinin with sialic acid residue on epimastigote cells. J. Exp. Med. 152, 1375–1392.PubMedCrossRefGoogle Scholar
  81. Peters W., Kolb H. and Kolb-Bachofen V. (1983) Evidence for a sugar receptor (lectin) in the peritrophic membrane of the blowfly larva, Calliphora erythrocephala Mg. (Diptera). J. Insect Physiol. 29, 275–280.CrossRefGoogle Scholar
  82. Poinar G.O. Jr, Hess R.T., Hansen E. and Hansen J.W. (1979) Laboratory infection of blackflies (Simuliidae) and midges (Chironomidae) by the mosquito mermithid, Romanomermis culicivorax. J. Parasitol. 64, 613–615.CrossRefGoogle Scholar
  83. Poinar G.O. Jr and Leutenegger R. (1971) Ultrastructural investigation of the melanization process in Culex pipiens (Culicidae) in response to a nematode. J. Ultrastruc. Res. 36, 149–158.CrossRefGoogle Scholar
  84. Ratcliffe N.A. (1986) Insect cellular immunity and the recognition of foreignness. In Immune Mechanisms in Invertebrate Vectors (Edited by Lackie A.M.), pp. 21–43, Clarendon Press, Oxford.Google Scholar
  85. Ratcliffe N.A. and Gagen S.J. (1976) Cellular defense reactions of insect hemocytes in vivo: Nodule formation and development in Galleria mellonella and Pieris brassicae larvae. J. Invertebr. Pathol. 28, 373–382.CrossRefGoogle Scholar
  86. Ratcliffe N.A. and Gagen S.J. (1977) Studies on the in vivo cellular reactions of insects: An ultrastructural analysis of nodule formation in Galleria mellonella. Tissue Cell 9, 73–85.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Ratcliffe N.A., Leonard C. and Rowley A.F. (1984) Prophenoloxidase activation: Nonself recognition and cell cooperation in insect immunity. Science 226, 557–559.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Ratcliffe N.A. and Rowley A.F. (1979) Role of hemocytes in defence against biological agents. In Insect Hemocytes, Development, Forms, Functions and Techniques (Edited by Gupta A.P.), pp. 331–414, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  89. Ratcliffe N.A., Rowley A.F., Fitzgerald S.W. and Rhodes C. (1985) Invertebrate immunity: Basic concepts and recent advances. Int. Rev. Cytol. 97, 183–350.CrossRefGoogle Scholar
  90. Renwrantz L. (1986) Lectins in molluscs and arthropods: Their occurrence, origin and roles in immunity. In Immune Mechanisms in Invertebrate Vectors (Edited by Lackie A.M.), pp. 81–93, Clarendon Press, Oxford.Google Scholar
  91. Renwrantz L. and Stahmer A. (1983) Opsonising properties of an isolated hemolymph agglutinin and demonstration of lectin-like recognition molecules at the surface of hemocytes from Mytilusedulis. J. Comp. Physiol. 149B, 535–546.CrossRefGoogle Scholar
  92. Salt G. (1968) The resistance of insect parasitoids to the defence reactions of their hosts. Biol. Rev. (Cambridge). 43, 200–232.CrossRefGoogle Scholar
  93. Salt G. (1973) Experimental studies in insect parasitism XVI: The mechanism of the resistance of Nemeritis to defence reactions. Proc. R. Soc. Lond. 183, 337–350.CrossRefGoogle Scholar
  94. Schmit A.R. and Ratcliffe N.A. (1977) The encapsulation of foreign tissue implants in Galleria mellonella larvae. J. Insect Physiol. 23, 175–184.PubMedCrossRefGoogle Scholar
  95. Schmittner S.M. and McGhee R.B. (1970) Host specificity of various species of Crithidia Leger. J. Parasitol. 56, 684–693.CrossRefGoogle Scholar
  96. Sutherland D.R., Christensen B.M. and Forton K.F. (1984) Defence reactions of mosquitoes to filarial worms: Role of the microfilarial sheath in the response of mosquitoes to inoculated Brugia pahangi microfilariae. J. Invertebr. Pathol. 44, 275–281.PubMedCrossRefGoogle Scholar
  97. Takahashi H., Komano H., Kawaguchi N., Kitamura N. and Nakanishi S. (1985) Cloning and sequencing of cDNA of Sarcophaga peregrina humoral lectin induced on injury of the body wall. J. Biol. Chem. 260, 12228–12233.PubMedGoogle Scholar
  98. Von Hofsten P., Faye I., Kockum K., Lee J.Y., Xanthopoulos K.G. (1985) Molecular cloning, cDNA sequencing and chemical synthesis of cecropin B from Hyalophora cecropia. Proc. Natl. Acad. Sci, USA 82, 2240–2243.PubMedCrossRefGoogle Scholar
  99. Wallbanks K.R., Ingram G.A. and Molyneux D.H. (1986) The agglutination of erythrocytes and Leishmania parasites by sandfly gut extracts: Evidence for lectin activity. Trop. Med. Parasitol. 37, 409–413.PubMedGoogle Scholar
  100. Walters J.B. and Ratcliffe N.A. (1983) Studies on the in vitro cellular reactions of insects: Fate of pathogenic and non-pathogenic bacteria in Galleria mellonella nodule. J. Insect Physiol. 29, 417–424.CrossRefGoogle Scholar
  101. Weathersby A.B. and McCall J.W. (1968) The development of Plasmodium gallinaceum Brumpt in the haemocoels of refractory Culex pipiens pipiens Linn. and susceptible Aedes aegypti (Linn.). J. Parasitol. 54, 1017–1022.PubMedCrossRefGoogle Scholar
  102. Welburn S.C., Maudlin I. and Ellis D.S. (1989) Rate of trypanosome killing by lectins in midguts of different species and strains of Glossina. Med. Vet. Entomol. 3, 77–82.PubMedCrossRefGoogle Scholar
  103. Wijers D. (1958) Factors that may influence the infection rate of Glossina palpis with Trypanosoma gambiense. I. The age at the time of the infected feed. Ann. Trop. Med. Parasitol. 52, 385–390.PubMedCrossRefGoogle Scholar
  104. Wittig G. (1965) Phagocytosis by blood cells in healthy and diseased caterpillars. I— Phagocytosis of Bacillus thuringiensis Berliner in Pseudaletia unipuncta (Haworth). J. Invertebr. Pathol. 7, 474–488.CrossRefGoogle Scholar
  105. Yeaton R.N. (1981) Invertebrate lectins: I— Occurrence. Dev. Comp. Immunol. 5, 391–402.PubMedCrossRefGoogle Scholar
  106. Zachary D. and Hoffmann J.A. (1973) The haemocytes of Calliphora erythrocephala (Meig ) Diptera. Z. Zellforsch. Mikrosk. Anat. 141, 55–73.CrossRefGoogle Scholar
  107. Zachary D. and Hoffmann D. (1984) Lysozyme is stored in the granules of certain haemocyte types in Locusta. J. Insect Physiol. 30, 405–411.CrossRefGoogle Scholar
  108. Zeledon R. and Monge E. (1966) Natural immunity of the bug, Triatoma infestans to the protozoan, Trypanosoma rangeli. J. Invertebr. Pathol. 8, 420–424.CrossRefGoogle Scholar

Copyright information

© ICIPE 1989

Authors and Affiliations

  • Godwin P. Kaaya
    • 1
  1. 1.The International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya

Personalised recommendations