International Journal of Tropical Insect Science

, Volume 23, Issue 4, pp 273–279 | Cite as

Immune Response of Insects to Abiotic Agents: A Review of Current Prospectives

  • El-Sayed H. Shaurub
Review Article


—The possible immune responses of insects to some abiotic agents were reviewed. These agents include insecticides, insect growth regulators, antibiotics, inert particles and miscellaneous substances of particulate and non-particulate nature. The significance of studying the immune response of insects to abiotic agents in relation to insect control, together with the link between the immune response of insects to both abiotic and biotic agents is discussed.

Key Words

Insecta insecticides insect growth regulators antibiotics inert particles immune response 


—Les possibles réponses immunitaires des insectes aux agents biotiques sont passées en revue. Ces agents comprennent les insecticides, les régulateurs de croissance des insectes, les antibiotiques, les particules inertes et des substances de diverses natures. L’intérêt d’étudier la réponse immunitaire des insectes aux agents abiotiques dans une perspective de lutte ainsi que le lien entre la réponse immunitaire des insectes aux agents biotiques et abiotiques est discuté.

Mots Clés

Insecta insecticides régulateur de croissance des insectes antibiotiques particules inertes réponse immunitaire 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashida M. (1981) A cane sugar factor suppressing activation of prophenoloxidase in haemolymph of the silkworm, Bombyx mon. Insect Biochem. 11, 57–65.CrossRefGoogle Scholar
  2. Barigozzi C. (1958) Melanotic tumors in Drosophila. J. Cell Comp. Physiol 52, 371–381.CrossRefGoogle Scholar
  3. Barigozzi C. (1969) Genetic control of melanotic tumors in Drosophila. Natl Cancer Instit. Mongr. 31, 277–290.Google Scholar
  4. Boman H. G. and Hultmark D. (1987) Cell-free immunity in insects. Anna. Rev. Microbiol. 41, 103–126.CrossRefGoogle Scholar
  5. Boman H. G. and Steiner H. (1981) Humoral immunity in cecropia pupae, pp. 75–91. In Current Topics in Microbiology and Immunology, 94/95 (Edited by W. Henle et al.). Springer-Verlag, Berlin-New York.CrossRefGoogle Scholar
  6. Boman H. G., Faye I. N. and Rasmuson T. (1974) Why insect immunity?, pp. 103–114. In Energy, Biosynthesis and Regulation in Molecular Biology (Edited by D. Richter). Walter de Gruyter, Berlin.Google Scholar
  7. Boman H. G., Faye I., Horsten P. V., Kockum K., Lee J. Y., Xanthopoulos K. C., Bennich H., Engstrom A., Merrifield B. R. and Andrech D. (1986) Antibacterial immune proteins in insects. A review of current prospectives, pp. 63–73. In Immunity in Invertebrates (Edited by M. Brehélin). Springer-Verlag, Berlin-Heidelberg.CrossRefGoogle Scholar
  8. Brehélin M. and Hoffmann J. A. (1980) Phagocytosis of inert particles in Locusta migratoria and Galleria mellonella: Study of ultrastructure and clearance. J. Insect Physiol 26, 103–111.CrossRefGoogle Scholar
  9. Brehélin M., Hoffmann J. A., Matz G. and Porte A. (1975) Encapsulation of implanted foreign bodies by haemocytes of Locusta migratoria and Melolontha melolontha. Cell Tissue Res. 160, 283–289.CrossRefGoogle Scholar
  10. Brewer E D. and Vinson S. B. (1971) Chemicals affecting the encapsulation of foreign material in an insect. J. Invertebr. Pathol 18, 287–289.CrossRefGoogle Scholar
  11. Brey P. T. (1994) The impact of stress on insect immunity. Bull Instit. Pasteur (Paris) 92, 101–118.Google Scholar
  12. Bryant P. J. and Sang J. H. (1969) Physiological genetics of melanotic tumors in Drosophila melanogaster. VI. The tumorgenic effects of juvenile hormone-like substances. Genetics 62, 321–336.PubMedPubMedCentralGoogle Scholar
  13. Chang B. S., Yoe S. M., Kim W. K. and Moon M. J. (1991) Electron microscope study on the haemocyte immune response to foreign substances in insects. II—Encapsulation. Kor. J. Entomol 21, 119–131.Google Scholar
  14. Christensen B. M., Forton K. F. and Leonard M. M. (1987) Surface changes on Brugia pahangi microfilariae and their association with immune evasion in Aëdes aegypti. J. Invertebr. Pathol 49, 14–18.CrossRefGoogle Scholar
  15. Cox-Foster D. L. and Stehr J. E. (1994) Induction and localization of FAD-glucose dehydrogenase (GLD) during encapsulation of abiotic implants in Manduca sexta larvae. J. Insect Physiol 40, 235–249.CrossRefGoogle Scholar
  16. El-Moataz Bellah M. M. and Shaurub E. H. (2000) Humoral immune response of the cotton leafworm, Spodoptera littoralis to the oral administration of pyriproxyfen and triflumuron. J. Egypt. Germ. Soc. Zool 31, 209–225.Google Scholar
  17. El-Shaikh T. A. A. (1997) Combined effects of certain insecticides and insect growth regulators on some stored grain beetles. MSc thesis, Ain Shams University, Egypt.Google Scholar
  18. Faye I., Pye A., Rasmuson I., Boman H. G. and Boman I. A. (1975) Insect immunity. II—Simultaneous induction of antibacterial activity and selective synthesis in diapausing pupae of Hyalophora cecropia and Samia cynthia. Infect. Immunol. 12, 1426–1438.Google Scholar
  19. Flyg C., Dalhammar G., Rasmuson B. and Boman H. G. (1987) Insect immunity: Inducible antibacterial activity in Drosophila. Insect Biochem. 17, 153–160.CrossRefGoogle Scholar
  20. Francois J. (1975) L’Encapsulation haémocytarie expérimentale chez le lépisme Thermobia domestica. J. Insect Physiol. 21, 1535–1546.CrossRefGoogle Scholar
  21. Gorman M. J., Cornel A. J., Collins F. H. and Paskewitz S. M. (1996) A shared genetic mechanism for melanotic encapsulation of CM-sephadex beads and a malaria parasite, Plasmodium cynomolgi B, in the mosquito, Anopheles gambiae. Exp. Parasitol. 84, 380–386.CrossRefGoogle Scholar
  22. Gorman M. J., Saverson D. W., Cornel A. J., Collins F. H. and Paskewitz S. M. (1997) Mapping a quantitative trait locus involved in melanotic encapsulation of foreign bodies in the malaria vector, Anopheles gambiae. Genetics 146, 965–971.PubMedPubMedCentralGoogle Scholar
  23. Götz P. (1986) Encapsulation in arthropods, pp. 153–170. In Immunity in Invertebrates (Edited by M. Brehélin). Springer-Verlag, Berlin-Heidelberg.CrossRefGoogle Scholar
  24. Götz P. and Boman H. G. (1985) Insect immunity, pp. 453–485. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by G. A. Kerkut and L. I. Gilbert). Pergamon Press, Oxford and New York.Google Scholar
  25. Grimstone A. V., Rotheram S. and Salt G. (1967) An electron-microscope study of capsule formation by insect blood cells. J. Cell Sci. 2, 201–292.Google Scholar
  26. Gupta A. P. (1985) Cellular elements in the hemolymph, pp. 401–451. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by G. A. Kerkut and L. I. Gilbert). Pergamon Press, New York.Google Scholar
  27. Hammerberg B., Rikihisa Y. and King M. W. (1984) Immunoglobulin interactions with surfaces of sheathed and exosheathed microfilaria. Parasitology 85, 421–434.Google Scholar
  28. Hassan T., El-Deeb S., Saad A. and El-Moursy A. (1995) Phagocytic activity of haemocytes for the Egyptian cotton leafworm, Spodoptera littoralis (Boisd). J. Egypt. Germ. Soc. Zool. 18, 37–57.Google Scholar
  29. Hegazi E. M., Khafagi W. E. and El-Aziz G. M. A. (1998) Effect of lefenuron, a chitin synthesis inhibitor, on encapsulation response of Spodoptera littoralis larvae to surplus Microplitis rufiventris larvae. Insect Sci. Applic. 18, 357–363.Google Scholar
  30. Hillen N. D. (1977) Experimental studies on the reactions of insect haemocytes to artificial implants of wound healing in insects. PhD thesis, London University, London.Google Scholar
  31. Hoffmann J. A. (1970) Endocrine regulation of the production and differentiation of haemocytes in an orthopteran insect, Locusta migratoria. Gen. Comp. Endocr. 15, 198–219.CrossRefGoogle Scholar
  32. Holst H. and Schlüter U. (1984) Effects of the antibiotic chartreusin on Epilachna varivestis Muls. (Coleoptera, Coccinellidae). Abst. XVII. Int. Congr. Entomol., Hamburg, R 16. 2.4.Google Scholar
  33. Jarosz J. (1988) The use of saline W, a physiological salt solution for experimentation on insect immunity. Cytobios 53, 19–29.PubMedGoogle Scholar
  34. Jarosz J. (1994) Modulation of cell-free immune responses in insects. Cytobios 79, 169–180.Google Scholar
  35. Jarosz J. and Glinski Z. (1999) Relationship of pesticides to insect cell-free immune response. Ann. Univ. Mariae Curie Sklodo. Sect. DD, Med. Veter. 54, 195–201.Google Scholar
  36. Jones J. C. (1967) Effects of repeated haemolymph withdrawals and of ligaturing the head on differential haemocyte counts of Rhodnius prolixus Stål. J. Insect Physiol. 13, 1351–1360.CrossRefGoogle Scholar
  37. Kaaya G. P. (1989) Assessment of antibiotic potentials of insect antibacterial factors. Insect Sci. Applic. 10, 341–346.Google Scholar
  38. Kaaya G. P. (1993) Inducible, humoral antibacterial immunity in insects, pp. 69–89. In Insect Immunity (Edited by J. P. N. Pathak). Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta.CrossRefGoogle Scholar
  39. Kaaya G. P., Flyg C. and Boman H. G. (1987) Insect immunity: Induction of cecropin and attacin-like antibacterial factors in the haemolymph of Glossina morsitans morsitans. Insect Biochem 17, 309–315.CrossRefGoogle Scholar
  40. Lackie A. M. (1976) Evasion of the haemocytic defense reaction of insects by larvae of Hymenolepis diminuta (Cestoda). Parasitology 75, 91–104.Google Scholar
  41. Lackie A. M. (1983) Effect of substratum wettability and charge on adhesion in vitro and encapsulation in vivo by insect haemocytes. J. Cell Sci. 63, 181–190.PubMedGoogle Scholar
  42. Locke M. (1991) Insect epidermal cells, pp. 1–20. In Physiology of the Insect Epidermis (Edited by K. Binnington and A. Retnakara). CSIRO Publications, East Melbourne, Australia.Google Scholar
  43. Lynn D. C. and Vinson S. B. (1977) Effects of temperature, host age, and hormones upon the encapsulation of Cardiochiles nigriceps eggs by Heliothis sp.. J. Invertebr. Pathol. 29, 50–55.CrossRefGoogle Scholar
  44. Madhaven K. (1972) Induction of melanotic pseudotumors in Drosophila melanogaster by juvenile hormone. Wilhelm Rowx Archiv. 169, 345–349.CrossRefGoogle Scholar
  45. Matz G. (1965) Implantation de fragments de cellophané chez Locusta migratoria L. Bull Soc. Zool Fr. 90, 429–433.Google Scholar
  46. Mohammed T. R. A. (1998) Biochemical and physiological studies of some insect growth regulators on the cotton leafworm, Spodoptera littoralis (Boisd.) PhD thesis, Cairo University, Egypt.Google Scholar
  47. Nappi A. J. (1974) Insect haemocytes and the problem of host recognition, pp. 201–224. In Contemporary Topics in Immunology Vol. IV (Edited by E. L. Cooper). Plenum Press, New York and London.Google Scholar
  48. Nappi A. J. and Sugumaran M. (1993) Some biochemical aspects of eumelanin formation in insect immunity, pp. 131–148. In Insect Immunity (Edited by J. P. N. Pathak). Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta.CrossRefGoogle Scholar
  49. Paskewitz S. and Riehle M. (1994) Response of Plasmodium refractory and susceptible strains of Anopheles gambiae to inoculated sephadex beads. Dev. Comp. Immunol 18, 369–375.CrossRefGoogle Scholar
  50. Pathak J. P. N. (1993a) Cell-mediated defence reactions in insects, pp. 47–58. In Insect Immunity (Edited by J. P N. Pathak). Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta.CrossRefGoogle Scholar
  51. Pathak J. P. N. (1993b) Haemagglutinins (lectins) in insects, pp. 149–169. In Insect Immunity (Edited by J. P. N. Pathak). Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta.CrossRefGoogle Scholar
  52. Pathak J. P. N. (1993c) Insect Immunity. Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta. 192 pp.CrossRefGoogle Scholar
  53. Pilat M. (1935) The effect of intestinal poisoning on the blood of locusts (Locusta migratoria). Bull. Entomol. Res. 26, 283–292.CrossRefGoogle Scholar
  54. Pryce M. J., Astone W. P. and Chadwick J. S. (1990) Cane sugar factor as an inducing agent of immunity in Galleria mellonella. Dev. Comp. Immunol 14, 369–378.CrossRefGoogle Scholar
  55. Rao C. G. P., Ray A. and Ramamurthy P. S. (1984) Effect of ligation and ecdysone on total heamocyte count in the tobacco caterpillar, Spodoptera littoralis (Noctuidae, Lepidoptera). Can. J. Zool. 62, 1461–1463.CrossRefGoogle Scholar
  56. Ratcliffe N. A. and Rowley A. F. (1979) Role of haemocytes in defense against biological agents, pp. 331–414. In Development, Forms, Functions and Techniques (Edited by A. P. Gupta). Cambridge University, Cambridge.Google Scholar
  57. Reik L. (1968) Contacts between insect blood cells, with special reference to the structure of the capsule formed about parasites. MSc thesis, Cambridge University, Cambridge.Google Scholar
  58. Salt G. (1956) Experimental studies in insect parasitism. IX—The reactions of a stock insect to an alien parasite. Troc. Roy. Soc. London (B) 149, 93–108.Google Scholar
  59. Salt G. (1970) The Cellular Defence Reactions of Insects. Cambridge Monograph in Experimental Biology No. 16. Cambridge University Press, Cambridge.Google Scholar
  60. Sato S., Akai H. and Sawada H. (1976) An ultrastructural study of capsule formation by Bombyx mori. Zool Jap. 49, 177–188.Google Scholar
  61. Schmidt A. R. (1979) Studies on encapsulation in insects. PhD thesis, Wales University.Google Scholar
  62. Schmidt A. R. and Ratcliffe N. A. (1978) The encapsulation of araldite implants: Recognition of foreignness in Clitumnus extradentatus. J. Insect Physiol 24, 511–521.CrossRefGoogle Scholar
  63. Siva-Jothy M. T., Yoshitaka T., Hooper R. E. and Plaistow S. J. (2001) Investment in immune function under chronic and acute immune challenge in an insect. Physiol. Entomol 26, 1–5.CrossRefGoogle Scholar
  64. Södërall K. and Aspán A. (1993) Prophenoloxidase activating system and its role in cellular communication, pp. 113–129. In Insect Immunity (Edited by J. P. N. Pathak). Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta.CrossRefGoogle Scholar
  65. Tackle G. B. and Lackie A. M. (1985) Chemokinetic behaviour of insect haemocytes in vitro. J. Cell Sci. 85, 85–94.Google Scholar
  66. Vinson S. B. (1990) Immunosuppression Is New Direction in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases. Alan R. Liss Inc., USA. pp. 517–535.Google Scholar
  67. Vinson S. B. (1993) Interactions between the insect endocrine system and the immune system, pp. 103–112. In Insect Immunity (Edited by J. P. N. Pathak). Oxford & IBH Publishing Co. Pvt Ltd, New Delhi, Bombay and Calcutta.CrossRefGoogle Scholar
  68. Wago H. (1983) The important significance of filopodial elongation of phagocytic granular cells of the silkworm, Bombyx mori in recognition of foreignness. Dev. Comp. Immunol. 7, 445–453.CrossRefGoogle Scholar
  69. Wiesner A. (1991) Induction of immunity by latex beads and by hemolymph transfer in Galleria mellonella. Dev. Comp. Immunol 15, 241–250.CrossRefGoogle Scholar
  70. Wiesner A. (1993) Further observations on the induction of immunity by hemolymph transfer in Galleria mellonella. Dev. Comp. Immunol. 17, 291–300.CrossRefGoogle Scholar
  71. Wiesner A. and Götz P. (1993) Silica beads induce cellular and humoral immune responses in Galleria mellonella larvae and in isolated plasmatocytes, obtained by a newly adapted nylon wool separation method. J. Insect Physiol 39, 865–876.CrossRefGoogle Scholar
  72. Yeager J. F. and Munson S. C. (1942) Changes induced in the blood cells of the southern armyworm, Prodenia eridania by the administration of poisons. J. Agric. Res. LXIV, 307–322.Google Scholar
  73. Zachary D. and Hoffmann D. (1984) Lysozyme is stored in the granules of certain haemocyte types in Locusta. J. Insect Physiol. 30, 405–411.CrossRefGoogle Scholar
  74. Zachary D., Brehélin M. and Hoffmann J. A. (1975) Role of the thrombocytoids in capsule formation in the dipteran Calliphora erythrocephala. Cell Tissue Res. 162, 142–348.CrossRefGoogle Scholar
  75. Zahedi M., Denham D. A. and Ham P. J. (1992) Encapsulation and melanization of Armigeres subalbatus against inoculated sephadex beads. J. Invertebr. Pathol 59, 258–263.CrossRefGoogle Scholar

Copyright information

© ICIPE 2003

Authors and Affiliations

  • El-Sayed H. Shaurub
    • 1
  1. 1.Department of Entomology, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations