Prospects for Innovative Tick Control Methods in Africa

  • Godwin P. KaayaEmail author
Research Article


Ticks, and the diseases they transmit, are of great economic and medical importance worldwide, and especially in Africa, where they are considered to be the greatest animal disease problem. The four major genera of ticks are Amblyomma, Rhipicephalus, Hyalomma and Boophilus. Ticks harm their animal hosts by sucking their blood thus reducing growth rate and milk yield, cause mechanical damage to hides and skins causing tick worry, introduce toxins and predispose the animals to myasis. Theileriosis, cowdriosis and dermatophilosis are the major tick-borne and tick-associated diseases of grazing cattle in Africa. The conventional method of tick control is the application of chemical acaricides, but it is associated with a number of problems including environmental pollution, chemical residues in meat and milk products as well as in wool, development of tick resistance and high cost. Some of the alternatives to chemical control of ticks that are available in Africa are discussed in this paper.

Key Words

ticks tick-borne diseases pathogens predators parasitoids nematodes anti-tick vegetation intergrazing 


Les tiques et les maladies qu’elles transmettent sont d’une grande importance économique et médicale dans le monde, et plus particulièrement en Afrique, où elles sont considérées comme le principal problème sanitaire du bétail. Les quatre principaux genres de tiques sont Amblyomma, Rhipicephalus, Hyalomma et Boophilus. Les tiques nuisent à la santé de leur hôte en suçant leur sang, ce qui se traduit par une réduction du taux de croissance et de la production laitière. Ils sont responsables d’altérations du cuir et de l’épiderme provoquant des lésions, injectent des toxines et prédisposent les animaux aux myases. La theilériose, la cowdriose et la dermatophilose sont les principales maladies des animaux de pâturage transmises par les tiques en Afrique. La méthode traditionnelle de contrôle des tiques est l’application d’acaricides chimiques mais elle s’accompagne de nombreux effets secondaires, parmi lesquels une pollution de l’environnement, la présence de résidus chimiques dans la viande et le lait ainsi que dans la laine, le développement de résistance chez les tiques et un coût élevé. Quelques unes des alternatives au contrôle chimique des tiques disponibles en Afrique sont présentées dans cette publication.

Mots Clés

tiques maladies transmises par les tiques pathogènes prédateurs parasitoïdes nématodes végétation anti-tique pâturage associé 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ascher K. R. S. (1993) Non-conventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica. Arch. Insect Biochem. Physiol. 22, 433–449.CrossRefGoogle Scholar
  2. Attwell R.I.G. (1966) Oxpeckers and their association with mammals in Zambia. Puk. 4, 17–48.Google Scholar
  3. Backer G.L., Milner R. J., Lutton G.G. and Watson D.M. (1994) Preliminary field trial on the control of Phaulacridium vittatum Sjostedt (Orthoptera: Acrididae) populations with Metarhizium flavoviride Gams and Rozsypal (Deuteromycotina: Hyphomycetes). J. Austr. Entomol. Soc. 33, 190–192.CrossRefGoogle Scholar
  4. Barci L.A.G. (1997) Biological control of the cattle tick Boophilus microplus (Acari: Ixodidae) in Brazil. Arg. Inst. Biol. 64, 95–101.Google Scholar
  5. Bezuidenhout J.D. and Stutterheim C.J. (1980) A critical evaluation of the role played by the red-billed oxpecker Buphagus erythrorynchus in the biological control of ticks. Onderstepoort J. Vet. Res. 54, 525–528.Google Scholar
  6. Bowman J.L., Logan T.M. and Hair J.A. (1986) Host Suitability of Ixodiphagus texanus Howard on five species of hard ticks. J. Agric. Entomol. 3, 1–9.Google Scholar
  7. Chiera J.W., Newson R. M. and Maradufu A. (1977) Anti-tick properties of molasses grass, Melinis minutiflora. ICIPE Fifth Annu. Rep.Google Scholar
  8. Cole M.M. (1965) Biological control of ticks by the use of hymenopterous parasites—a review. WHO/EBL/43.65, pp. 1–12.Google Scholar
  9. Correia A. C. B., Fiorin A. C., Monteiro A. C. and Verissimo C. J. (1997) Effects of Metarhizium anisopliae on the tick Boophilus microplus (Acari: Ixodidae) in stabled cattle. J. Invertebr. Pathol. 71, 189–191.CrossRefGoogle Scholar
  10. Couto J.T. (1994) Operation oxpecker. The Farmers, pp. 10–11.Google Scholar
  11. Dipeolu O. O. (1982) The acaricides being marketed in Nigeria and the status of resistance of Nigerian ticks to them. Report of Commissioned Research to the Federal Livestock Department of Nigeria.Google Scholar
  12. Dipeolu O.O. and Ndungu J.N. (1991) Acaricidal activity of “Kupetaba”, a ground mixture of natural products against Rhipicephalus appendiculatus. Vet. Parasito. 38, 327–338.CrossRefGoogle Scholar
  13. Fargues J. and Remaudiere G. (1977) Consideration on the specificity of entomopathogenic fungi. Mycopathologi. 62, 31–41.CrossRefGoogle Scholar
  14. Georgis R. (1990) Formulation and application technology, pp. 173–191. In Entomopathogenic Nematodes in Biological Control. (Edited by R. Gaugler and H.K. Kaya). CRC Press, Boca Raton, Fla.Google Scholar
  15. Grobler J.H. (1979) The re-introduction of oxpeckers Buphagus africanus and B. erythrorynchus to Rhodes Matopos National Park, Rhodesia. Biol. Con. 15, 151–158.CrossRefGoogle Scholar
  16. Hassan S. M., Dipeolu O. O., Amoo A. O. and Odhiambo T. R. (1991) Predation on livestock ticks by chickens. Vet. Parasitol. 38, 199–204.CrossRefGoogle Scholar
  17. Hassan S. M., Dipeolu O. O. and Munyinyi D. M. (1992) Influence of exposure period and management methods on the effectiveness of chickens as predators of ticks infesting cattle. Vet. Parasitol. 43, 301–309.CrossRefGoogle Scholar
  18. Hassan S.M. and Dipeolu O.O. (1993) Livestock tick predation by chickens: The rate of digestion of ticks in the alimentary tract of chickens. Biocontr. Sci. Technol. 3, 79–83.CrossRefGoogle Scholar
  19. Hu R., Hyland K.E. and Oliver J.H. (1998) A review on the use of Ixodiphagus wasps (Hymenoptera: Encyrtidae) as natural enemies for the control of ticks (Acari: Ixodidae). System. Appl. Acarol. 3, 19–28.CrossRefGoogle Scholar
  20. Kaaya G. P. and Hassan S.M. (2000) Entomogenous fungi as promising biopesticides for tick control. Exp. Appl. Acarol. 24, 913–923.CrossRefGoogle Scholar
  21. Kaaya G. P. (2000) The potential of anti-tick plants as components of integrated tick control strategy. Ann. N. Y. Acad. Sci. 916, 576–582.CrossRefGoogle Scholar
  22. Kaaya G. P., Samish M. and Itamar G. (2000) Laboratory evaluation of pathogenicity of entomogenous nematodes to African tick species. Ann. NY Acad. Sci. 916, 303–308.CrossRefGoogle Scholar
  23. Kaaya G. P. and Saxena R. C. (1998) Evaluation of neem products for the control of the African ticks Rhipicephalus appendiculatus, Amblyomma variegatum and Boophilus decoloratus. ICIPE Annu. Sci. Rep. 1995–1997.Google Scholar
  24. Kaaya G. P. (1992) Non-chemical agents and factors capable of regulating tick populations in nature: A mini review. Insect Sci. Applic. 13, 587–594.Google Scholar
  25. Kaaya G.P. (1994) Achieving sustainable crop production in Africa: Roles of pesticides and biological control agents in integrated pest management. Insect Sei. Applic. 15, 223–234.Google Scholar
  26. Kaaya G.P., Mwangi E.N. and Malonza M.M. (1995) Acaricidal activity of Margaritaria discoidea plant extracts against the ticks Rhipicephalus appendiculatus and Amblyomma variegatum. Int. J. Acarol. 21, 123–129.CrossRefGoogle Scholar
  27. Kaaya G.P., Mwangi E.N. and Ouna E. (1996) Prospects for biological control of livestock ticks, Rhipicephalus appendiculatus and Amblyomma variegatum with the entomogenous fungi, Beauveria bassiana and Metarhizium anisopliae. J. Invertebr. Pathol. 67, 15–20.CrossRefGoogle Scholar
  28. Kaaya G.P. and Okech M.A. (1990) Horizontal transmission of mycotic infection in adult tsetse, Glossina morsitans morsitans. Entomophag. 35, 46–57.CrossRefGoogle Scholar
  29. Kagaruki L. (1997) Country Report, Tanzania, pp. 10–11. In Proceedings of International Tick Modelling Workshop, 9–19 September 1997, ICIPE, Nairobi, Kenya. ICIPE Science Press, Nairobi, Kenya.Google Scholar
  30. Kaya H.K. (1985) Entomogenous nematodes for insect control in IPM systems, pp. 283–302. In Biological Control in Agricultural IPM Systems (Edited by M.A. Hass and D.C. Herzog). Academic Press, New York.Google Scholar
  31. Kocan K.M., Pidnerney M.S,. Claypool P.L., Samish M. and Glazer I. (1998) Interaction of entomopathogenic nematodes (Steinernematidae) with selected species of ixodid ticks (Acarina: Ixodidae). J. Med. Entomol. 35, 514–520.CrossRefGoogle Scholar
  32. Maradufu A. (1982) Furanosesquiterpenoids of Commiphora erythraea and C. myrrh. Phytochem. 21, 677–680.CrossRefGoogle Scholar
  33. Mather T. N., Piesman J. and Spielman A. (1987) Absence of spirochaetes Borrelia burgdoferi and piroplasms Babesia microti in deer ticks Ixodes dammini parasitized by chalcid wasps Hunterellus hookeri. Med. Vet. Entomol. 1, 3–8.CrossRefGoogle Scholar
  34. Mauleon H., Barre N. and Panova S. (1993) Pathogenicity of 17 isolates of entomophatogous nematodes (Steinernematidae and Heterorhabditidae) for the ticks Amblyomma variegatum (Fabricius), Boophilus microplus (Canestrini) and Boophilus annulatus (Say). Exp. Appl. Acarol. 17, 831–838.CrossRefGoogle Scholar
  35. Moreau R.E. (1933) The food of the red-billed oxpecker, Buphagus erythrorynchus (Stanley). Bull. Entomol. Res. 24, 325–335.CrossRefGoogle Scholar
  36. Mwangi E. N. and Kaaya G. P. (1997) Prospects of using parasitoids (Insecta) for tick management in Africa. Int. J. Acarol. 23, 215–219.CrossRefGoogle Scholar
  37. Mwangi E. N., Hassan S. M., Kaaya G. P. and Essuman S. (1997) The impact of Ixodiphagus hookeri, a tick parasitoid on Amblyomma variegatum (Acari: Ixodidae) in a field trial in Kenya. Exp. Appl. Acarol. 21, 117–126.CrossRefGoogle Scholar
  38. Mwangi E. N., Essuman S., Kaaya G. P., Nyandat E., Munyinyi D. and Kimondo M. (1995) Repellence of the tick Rhipicephalus appendiculatus by the grass Melinis minutiflora. Trop. Anim. Hlth Prod. 27, 211–216.CrossRefGoogle Scholar
  39. Mwangi E.N., Essuman S., Kaaya G.P., Nyandat E., Munyinyi D. and Kimondo M. G. (1994a) Repellence of the tick Rhipicephalus appendiculatus by the grass Melinis minutiflora. Trop. Anim. Hlth Prod. 27, 211–216.CrossRefGoogle Scholar
  40. Mwangi E. N., Kaaya G.P. and Kimondo M.G. (1994b) Infection of Amblyomma variegatum with a hymenopteran parasitoid in the laboratory and some aspects of its basic biology. J. Biol. Contr. 4/2, 101–104.CrossRefGoogle Scholar
  41. Mwangi E.N., Dipeolu O.O., Kaaya G.P., Newson R.M., and Hassan S.M. (1991) Predators, parasitoids and pathogens of ticks. A review. Biocontr. Sci. Technol. 1, 147–156.CrossRefGoogle Scholar
  42. Mwangi E.N., Newson R. M. and Kaaya G.P. (1993) A new hymenopteran species of parasitoid isolated from the Bont tick, Amblyomma variegatum. Discovery and Innovatio. 5, 331–335.Google Scholar
  43. Norval R.A.I., Perry B.D. and Young A. S. (1992) The Epidemiology of Theileriosis in Africa. Academic Press, London. 481 pp.Google Scholar
  44. Norval R.A.I., Tebele N., Short N.J. and Clatworthy J.N. (1983) A laboratory study on the control of economically important tick species with legumes of the genus Stylosanthes. Zimbabwe Vet. J. 14, 26–29.Google Scholar
  45. Okello-Onen J. and Nsumbuga-Mutaka R. C. (1997) The status of ticks and tick-borne diseases in Uganda, pp. 8–9. In Proceedings of International Tick Modelling Workshop, 9–19 September 1997, ICIPE, Nairobi, Kenya. ICIPE Science Press, Nairobi, Kenya.Google Scholar
  46. Pegram R. G., Chizyuka H. G. B., Mwase E. T. and Zekle Z. (1988) Production economics in worldwide animal commodities subject to disease transmission and infestation by acarines: The economic impact of cattle tick control in Central Africa. Nat. Symp. Theileriosis, 17–19 October, Lusaka, Zambia.Google Scholar
  47. Perry B.D., Mukhebi A. W., Norval R. A. I. and Barret J. C. (1990) A preliminary assessment of current and alternative tick-borne disease control strategies in Zimbabwe. Report to the Director of Veterinary Services, Zimbabwe. 41 pp.Google Scholar
  48. Poinar Jr. G.O. (1979) Nematodes for Biological Control of Insects. CRC Press, Boca Raton, Fla. 248 pp.Google Scholar
  49. Rice M. (1993) Development of neem research and industry in Australia. World neem conference (Bangalore, India), Souvenir, pp. 8–24.Google Scholar
  50. Rutz D.A. and Patterson R.S. (1990) Biocontrol of Arthropods Affecting Livestock and Poultry. Westview Press, Boulder, CO. 316 pp.Google Scholar
  51. Samish M. (2000) Biocontrol of ticks. Ann. NY Acad. Sci. 916, 172–178.CrossRefGoogle Scholar
  52. Samish M. and Glazer I. (1991) Killing ticks with parasitic nematodes of insects. J. Invertebr. Pathol. 58, 281–282.CrossRefGoogle Scholar
  53. Samish M. and Glazer I. (1992) Infectivity of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditidae bacteriophora to female ticks of Boophilus annulatus (Arachnida: Ixodidae). J. Med. Entomol. 29, 614–618.CrossRefGoogle Scholar
  54. Samish M. and Rehacek J. (1999) Pathogens and predators of ticks and their potential in biological control. Annn. Rev. Entomol. 44, 159–182.CrossRefGoogle Scholar
  55. Saxena R. C. (1989) Insecticides from neem, pp. 110–135. In Insecticides of Plant Origin (Edited by J. T. Amason, B. J. R. Philogene and P. Morand. ACS Symp. Series 387. American Chemical Society, Washington DC.Google Scholar
  56. Schmutterer H. (1990) Properties and potentials of natural pesticides from neem tree, Azadirachta indica. Annu. Rev. Entomol. 35, 271–297.CrossRefGoogle Scholar
  57. Stutterheim C.J. and Brooke R.K. (1981) Past and present ecological distribution of the yellow-billed oxpecker in South Africa. South African J. Zool. 16, 44–49.CrossRefGoogle Scholar
  58. Stutterheim I.M., Bezuidenhout J.D. and Elliott E.G.R. (1988) Comparative feeding behavior and food preferences of oxpeckers Buphagus erythrorynchus and B. africanus in captivity. Onderstepoort. J. Vet. Res. 55, 173–179.PubMedGoogle Scholar
  59. Sutherst R. W., Raymond J. J. and Schnitzerling H. J. (1982) Tropical legumes of the genus Stylosanthes immobilize and kill cattle ticks. Natur. 295, 320–321.CrossRefGoogle Scholar
  60. Tatchell R. J., Chimwani D., Chirchir J. J., Ongare J. O., Mwangi E., Rinkanya F. and Whittington D. (1986) A study of the justification for intensive tick control in Kenya rangelands. Vet. Recor. 119, 401–403.CrossRefGoogle Scholar
  61. Thomson K. C., Rao J. and Romero T. (1978) Anti-tick grasses as the basis for developing practical tropical tick control packages. Trop. Anim. Hlth. Prod. 10, 179–182.CrossRefGoogle Scholar
  62. Van Someren V.D. (1951) The red-billed oxpecker and its relation to stock in Kenya. East Afr. Agric. J. 17, 1–11.Google Scholar
  63. Wharton R. H. and Roulston W.J. (1970) Resistance of ticks to chemicals. Annu. Rev. Entomol. 15, 281–404.CrossRefGoogle Scholar
  64. Wysoki M. (1998) Problems and trends of agricultural entomology at the end of the 2nd millennium, pp. 89–143. In Estratto da Boll. Del laboratorio di entomologia agraria-portici “Fillipo Silverstri”. Napoli, Italy. 54.Google Scholar
  65. Zimmerman R. H., Carris C. I. and Beaver J.S. (1984) Potential of Stylosanthes plants as a component in an integrated pest management approach to tick control. Prev. Vet. Med. 2, 579–588.CrossRefGoogle Scholar

Copyright information

© ICIPE 2003

Authors and Affiliations

  1. 1.Department of BiologyUniversity of NamibiaWindhoekNamibia

Personalised recommendations