Do Generalist Phytoseiid Mites (Gamasida: Phytoseiidae) Have Interactions with Their Host Plants?

  • Serge KreiterEmail author
  • Marie-Stéphane Tixier
  • Thierry Bourgeois
Research Article


In order to study factors affecting phytoseiid mite occurrence in uncultivated areas, we sampled phytoseiid mites (densities, diversity and age structure) on several plants located in 4 uncultivated areas surrounding European vineyards over 3 years to determine how plants, and mainly their leaf structure, affect mite communities. The plant composition of these areas greatly influenced phytoseiids density and diversity. The relationships between leaf structure (trichomes, pollen densities, number and structure of domatia, leaf surface) and Kampimodromus aberrans (Oudemans) densities were also studied. The frequency of occurrence and the abundance of K. aberrans per cm2 were correlated to high trichome densities. A complex phylloplane (many hairs and shelters or domatia) can benefit K. aberrans more than other phytoseiid mite species. The number and the rating of domatia were important for the development of K. aberrans; high proportions of immatures were observed only on plants with these structures. Pollen densities were significantly correlated to trichome densities; domatia structure had only a somewhat lesser effect. Furthermore, we demonstrated that K. aberrans does take up plant fluids. Our study shows how dense trichome and pollen levels can affect the development of K. aberrans populations and adds perspective to the influence of domatia on these important predaceous mite populations.

Key Words

Kampimodromus aberrans leaf trichomes domatia pollen Celtis australis 


Afin d’étudier les facteurs responsables de la présence des phytoséiides dans les zones non cultivées à proximité des parcelles, nous avons échantillonné les phytoséiides (densités, diversité et structure d’âge) sur plusieurs plantes localisées dans 4 zones non cultivées entourant des parcelles de vigne. Cette étude de 3 ans avait pour objectif de déterminer quelles plantes et surtout quelles structures des feuilles affectent les communautés d’acariens. La composition floristique de ces zones influence les densités et diversités des phytoséiides. La relation entre la structure des feuilles (trichomes, densités de pollen, nombre et structure des domaties, surface des feuilles) et les densités de Kampimodromus aberrans (Oudemans) ont aussi été étudiés. La fréquence de la présence et l’abondance de K. aberrans par cm2 sont corrélées aux densités élevées de trichomes. Une structure complexe du phylloplan (beaucoup de poils et abris ou domaties) pourrait conférer un avantage compétitif à K. aberrans au sein de peuplements de phytoséiides. Le nombre et le niveau d’ouverture des domaties semblent importants pour le développement de K. aberrans; des proportions élevées d’immatures ayant été observées seulement sur des plantes avec ces structures. Des densités élevées de pollen sont significativement corrélées à la densité de trichomes alors que la structure des domaties a un effet plus limité. De plus, nous avons démontré que K. aberrans absorbe des liquides directement à partir de la plante. Notre étude montre combien des trichomes denses et les taux de pollen pourraient affecter le développement des populations de K. aberrans et ouvre des perspectives importantes d’étude concernant l’influence des domaties sur ces populations de prédateurs importants.

Mots Clés

Kampimodromus aberrans pilosité de la feuille domatie pollen Celtis australis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addison J. A., Hardman J. M. and Walde S. J. (2000) Pollen availability for predaceous mites on apple: Spatial and temporal heterogeneity. Exp. Appl. Acarol. 24, 1–18.CrossRefGoogle Scholar
  2. Andersen S. T. (1974) Wind conditions and pollen deposition in a mixed deciduous forest. Gran. 4, 57–77.CrossRefGoogle Scholar
  3. Barret D. (1994) Influence de l’architecture du phylloplan dans l’organisation des peuplements de phytoséiides et dans leurs associations avec les plantes. PhD thesis, ENSA Montpellier, France. 250 pp.Google Scholar
  4. Barret D. and Kreiter S. (1995) Morphometrics of some phytoseiid mites and characteristics of their habitat: consequences for biological control, pp. 461–473. In The Acari. Physiological and Ecological Aspects of Acari-Host Relationships (Edited by D. Kropczynska et al.). Warzawa, Poland.Google Scholar
  5. Beery W. L., Stimmann M. W. and Wolf W. W. (1972) Marking native phytophagous insects with rubidium: A proposed technique. Ann. Entomol. Soc. Am. 65, 236–238.CrossRefGoogle Scholar
  6. Boller E. F. (1984) Eine einfache Ausschwemm methode zur schnellen Erfassung von Raubmilben, Thrips und anderen Kleinarthropoden im Weinbau. Schweiz. Zeitschrift Obst-Weinba. 120, 249–255.Google Scholar
  7. Camporese P. and Duso C. (1996) Different colonization patterns of phytophagous mites (Acari: Tetranychidae, Phytoseiidae) on three grape varieties: A case study. Exp. Appl. Acarol. 20, 1–22.Google Scholar
  8. Chant D. A. and McMurtry J. A. (1994) A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). Int. J. Acarol. 20, 223–316.CrossRefGoogle Scholar
  9. Coiutti C. (1993) Acari fitoseidi su piante arboree spontanee e coltivate in Fruili-Venezia Giulia. Frust. Entomol. 16, 65–77.Google Scholar
  10. Cour P. (1974) Nouvelles techniques de détection des flux et des retombées polliniques: Étude de la sédimentation des pollens et des spores à la surface du sol. Pollen et Spore. 16, 103–141.Google Scholar
  11. Croft B. A. and Slone D. H. (1998) Perturbation of regulated apple mites: Immigration and pesticide effects on outbreaks of Panonychus ulmi and associated mites (Acari: Tetranychidae, Eriophyidae, Phytoseiidae and Stigmaeidae). Environ. Entomol. 27, 1548–1556.CrossRefGoogle Scholar
  12. Duso C. (1992) Role of Amblyseius aberrans (Oudemans), Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari: Phytoseiidae) in vineyards. III. Influence of variety characteristics on the success of A. aberrans and T. pyri releases. J. Appl. Entomol. 114, 455–462.CrossRefGoogle Scholar
  13. Duso C., Malagnini V. and Paganelli A. (1997) Indagini preliminari sul rapporta tra polline e K. aberrans su Vite. Allioni. 35, 229–239.Google Scholar
  14. Duso C., Torresan L. and Vettorazzo E. (1993) La vegetazione spontanea come riserva di ausiliari: Considerazioni sulla diffusione degli Acari Fitoseidi (Acari: Phytoseiidae) in un vigneto e sulle piante spontanee contigue. Boll. Tool. Agr. Bach. 25, 183–203.Google Scholar
  15. Duso C. and Vettorrazzo E. (1999) Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Exp. Appl. Acarol. 23, 741–763.CrossRefGoogle Scholar
  16. Engel R. (1989) Alternative prey and other food resources of the phytoseiid mites Typhlodromus pyri. Zusamm. Tagungs. Sitten. 28, 124–127.Google Scholar
  17. Faegri K. and Iversen J. (1989) Textbook of Pollen Analysis. 4th ed. John Wiley & Sons, New York, USA.Google Scholar
  18. Fernandes O. A., Wright R. J., Baumgarten R. J. and Mayo Z. B. (1978) Use of rubidium to label Lysiphhlebus testaceipes, a parasitoid of green bugs, for dispersal studies. Environ. Entomol. 26, 1167–1172.CrossRefGoogle Scholar
  19. Frazer B. D. and Raworth D. (1974) Marking aphids with rubidium. Can. J. Zool. 52, 1135–1136.CrossRefGoogle Scholar
  20. Grafton-Cardwell E. E. and Ouyang Y. (1996) Influence of citrus leaf nutrition on survivorship, sex ratio, and reproduction of Euseius tularensis (Acari: Phytoseiidae). Environ. Entomol. 25, 1020–1025.CrossRefGoogle Scholar
  21. Graham H. M., Wolfenbarger D. A. and Nosky J. B. (1978) Labeling plants and their insect fauna with rubidium. Environ. Entomol. 7, 379–383.CrossRefGoogle Scholar
  22. Jackson C. G. (1991) Elemental markers for entomophagous insects. Southwest. Entomol. 14, 65–69.Google Scholar
  23. Karban R., English-Loeb G., Walker M. A. and Thaler J. (1995) Abundance of phytoseiid mites on Vitis sp.: Effects of leaf hairs, domatia, prey abundance and plant phylogeny. Exp. Appl. Acarol. 19, 189–197.CrossRefGoogle Scholar
  24. Kreiter S., Tixier M.-S., Auger P., Muckensturm N., Sentenac G., Doublet B. and Weber M. (2000) Phytoseiid mites of vineyards in France (Acari: Phytoseiidae). Acarologi. 41, 77–96.Google Scholar
  25. Kropczynska D., Van de Vrie M. and Tomczyk A. (1988) Bionomics of Eotetranychus tiliarum and its phytoseiid predators. Exp. Appl. Acarol. 5, 65–81.CrossRefGoogle Scholar
  26. Lester P.J., Thistlewood H.M.A. and Harmsen R. (2000) Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Exp. Appl. Acarol. 24, 19–33.CrossRefGoogle Scholar
  27. McMurtry J. A. (1992) Dynamics and potential impact of “generalist” phytoseiids in agroecosystems and possibilities for establishment of exotic species. Exp. Appl. Acarol. 14, 371–382.CrossRefGoogle Scholar
  28. McMurtry J. A. and Croft B. A. (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 42, 291–321.CrossRefGoogle Scholar
  29. Moraes G. J. de, McMurtry J. A. and Denmark H. A. (1986) A Catalog of the Mite Family Phytoseiidae: References to Taxonomy, Synonymy, Distribution and Habitat. Embrapa, Brasilia, Brazil.Google Scholar
  30. NP Stat® (1995) - Version 2.5. Praxeme R&D. CNRS.Google Scholar
  31. O’Dowd D. J. and Willson M. F. (1989) Leaf domatia and mites on Australasian plants: Ecological and evolutionary implications. Biol. J. Linn. Soc. 37, 191–236.CrossRefGoogle Scholar
  32. O’Dowd D. J. and Willson M. F. (1991) Associations between mites and leaf domatia. Trends Ecol. Evol. 6, 179–182.CrossRefGoogle Scholar
  33. Ragusa di Chiara S., Papaioannou-Souliotis P., Tsolakis H. and Tsagkarakou N. (1995) Acari fitoseidi (Parasitiformes, Phytoseiidae) della Grecia associati a piante forestali a diverse altitudini. Boll. Zool. Agr. Bach. 27, 85–91.Google Scholar
  34. Schausberger P. (1992) Vergleichende Untersuchungen zum Lebensverlauf die Erstellung von Lebenstafeln und die Vermehrungskapazitaet von Amblyseius aberrans. Oud. und Amblyseius finlandicus Oud. (Acari: Phytoseiidae). Pflanzenschutzbericht. 52, 53–71.Google Scholar
  35. Schausberger P. (1997) Inter- and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari: Phytoseiidae). Exp. Appl. Acarol. 21, 131–150.CrossRefGoogle Scholar
  36. Schausberger P. (1998) Survival, development and fecundity in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari, Phytoseiidae) feeding on the San José scale Quadraspidiotus perniciosus (Coccina, Diaspididae). J. Appl. Entomol. 122, 53–56.CrossRefGoogle Scholar
  37. Schausberger P. and Croft B.A. (1999) Predation and discrimination between con- and heterospecific eggs among specialist and generalist phytoseiid mites (Acari: Phytoseiidae). Biol. Contr. 28, 523–528.Google Scholar
  38. Scherrer B. (1984) Biostatistique. Bibliothèque Nationale, Québec, Canada.Google Scholar
  39. Sokal R. R. and Rohlf F. J. (1981) Biometry: The Principles and Practice of Statistics in Biological Research. Freeman ed., Biometry 2nd ed., New York, USA.Google Scholar
  40. Statistica® (1998) Version 6.0. Statsoft, Inc., USA.Google Scholar
  41. Surface foliaire, version 1-2© (1992) Cirad-Ca / Avenix, Montpellier, France.Google Scholar
  42. Tixier M.-S. (2000) La présence de phytoséiides dans les abords non cultivés des parcelles a-t-elle un intérêt appliqué en viticulture? PhD Thesis ENSA Montpellier, France.Google Scholar
  43. Tixier M.-S., Kreiter S., Auger P. and Weber M. (1998) Colonization of Languedoc vineyards by phytoseiid mites (Acari: Phytoseiidae): Influence of wind and crop environment. Exp. Appl. Acarol. 22, 523–542.CrossRefGoogle Scholar
  44. Walter D. E. (1996) Living on leaves: Mites, tomenta and leaf domatia. Annu. Rev. Entomol. 41, 101–114.CrossRefGoogle Scholar
  45. Walter D. E. and O’Dowd D. J. (1992a) Leaves with domatia have more mites. Ecolog. 73, 1514–1518.CrossRefGoogle Scholar
  46. Walter D. E. and O’Dowd D. J. (1992b) Leaf morphology and predators: Effect of leaf domatia on the abundance of predatory mites (Acari: Phytoseiidae). Environ. Entomol. 21, 478–484.CrossRefGoogle Scholar

Copyright information

© ICIPE 2003

Authors and Affiliations

  • Serge Kreiter
    • 1
    Email author
  • Marie-Stéphane Tixier
    • 1
  • Thierry Bourgeois
    • 1
  1. 1.Ecole Nationale Supérieure Agronomique de Montpellier/Institut National de la Recherche Agronomique, UP d’Ecologie Animale et de Zoologie AgricoleLaboratoire d’AearologieMontpellier cedex 01France

Personalised recommendations