Advertisement

Dispersal of Kampimodromus aberrans (Oudemans) between Uncultivated Areas and Grape Fields: Does Pesticide Application Affect the Settlement of Migrants?

  • Marie-Stéphane TixierEmail author
  • Serge Kreiter
Research Article

Abstract

Kampimodromus aberrans is a predatory mite species present in vineyards of South of France and also in uncultivated areas, from where great densities disperse into the neighbouring vine fields, mainly by aerial means. In order to determine the origin of migrants in an experimental vine plot, a molecular study using RAPD markers was performed. It was found that there exists genetic differentiation of populations collected in the experimental vineyard, and those collected, both from surrounding cultivated and uncultivated areas. No correlation between genetic and geographic distances was found. Thus, despite the dispersal of great densities of mites into the plot, selection pressures may affect their settlement. To determine the impact of pesticide application on mite settlement, we studied the insecticide resistance of K. aberrans populations collected in the vine field and on an oak located in a neighbouring uncultivated area. The insecticide tested, quinalphos, is the most frequently applied pesticide in the plot. High resistance levels were observed in both populations. However, at the recommended concentration, mortality rates (80 and 87 %) were quite the same for the two populations. Thus, the application of this pesticide seems not to be the major explanation of the poor settlement of migrants coming from woody areas into the plot, and other studies have to be conducted to determine other factors involved.

Key Words

Phytoseiidae Kampimodromus aberrans colonisation vineyards random amplified polymorphism DNA pesticide resistance quinalphos 

Résumé

Kampimodromus aberrans est l’espèce prédatrice la plus importante dans les vignobles du Sud de la France. Cette espèce se développe également dans les milieux non cultivés à partir desquels, des densités très importantes de cette espèce peuvent se disperser essentiellement par voie aérienne dans les parcelles de vigne avoisinantes. Afin de déterminer l’origine des individus migrants à l’intérieur d’une parcelle d’étude, un marquage moléculaire à l’aide de RAPD a été réalisé. Les populations collectées dans la parcellle expérimentale et dans son environnement cultivé et non cultivé présentent des profils génétiques très différents. Aucune corrélation entre les distances génétiques et les distances géographiques n’a été mise en évidence. Malgré la dispersion de densités importantes de K. aberrans à l’intérieur de la parcelle expérimentale, il semble que des pressions de sélection propres à chaque milieu déterminent la différenciation génétique des populations et l’installation de ces individus dans la parcelle. Afin de déterminer l’impact des pesticides sur cette installation, la résistance à un insecticide de différentes populations de K. aberrans collectées dans une zone non cultivée bordant la parcelle sur un chêne pubescent et dans une parcelle de vigne, a été étudiée. L’insecticide testé, quinalphos, est l’insecticide le plus fréquemment utilisé dans la parcelle d’étude. Les deux populations testées présentent des hauts niveaux de résistance. Cependant, à la dose homologuée, le taux de mortalité est quasiment identique pour les deux populations (80 et 87 %). L’application de ce pesticide ne semble donc pas être le facteur majeur permettant d’expliquer la mauvaise installation des individus se dispersant de la zone boisée avoisinantes dans la parcelle. D’autres études sont donc nécessaires afin de déterminer quels sont les autres facteurs permettant d’expliquant cette mauvaise installation.

Mots Clés

Phytoseiidae Kampimodromus aberrans colonisation vignoble random amplified polymorphism DNA résistance quinalphos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbot W.S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267.CrossRefGoogle Scholar
  2. Abou-Setta M.M., Childers C.C., Denmark H.A. and Browning H.W. (1991) Comparative morphology reproductive compatibility between populations of Euseius mesembrinus (Acari: Phytoseiidae) from Florida and Texas. Exp. Appl. Acarol. 10, 213–220.CrossRefGoogle Scholar
  3. Altiéri M.A. and Letourneau D.K. (1982) Vegetation management and biological control in agroecosystems. Crop Protectio. 1, 405–430.CrossRefGoogle Scholar
  4. Black W.C. (1995) Fortran programs for the analysis of RAPD-PCR markers in populations. Colorado State University, Ft Collins, CO 805523.Google Scholar
  5. Boller E.F., Remund U. and Candolfi M.P. (1988) Hedges as potential sources of Typhlodromus pyri, the most important predatory mite in vineyards of northern Switzerland. Entomophag. 33, 249–255.CrossRefGoogle Scholar
  6. Castagnoli M., Liguori M. and Simoni S. (1999) Effect of two different host plants on biological features of Neoseiulus californicus (McGregor). Int. J. Acarol. 25, 145–149.CrossRefGoogle Scholar
  7. Coiutti C. (1993) Acari Fitoseidi su piante arboree spontanee e coltivate in Friuli-Venezia Giulia. Frust. Entomol. 16, 65–77.Google Scholar
  8. Corino L. (1989) Les acariens phytophages sur vigne en Italie: évolution des populations et équilibres naturels avec les acariens prédateurs. Proceedings of “colloque sur les acariens des cultures”Google Scholar
  9. Montpellier, 24–26 octobre 1989. Ann. ANP. 2, 116–123.Google Scholar
  10. Croft B.A. (1990) Arthropod Biological Control Agents and Pesticides. John Wiley & Sons Publishing. 723 pp.Google Scholar
  11. Dennis P. and Fry G.L.A. (1992) Field margins: Can they enhance natural enemy population densities and general arthropod diversity on farmland? Agric. Ecosyst. Environ. 40, 95–115.CrossRefGoogle Scholar
  12. Dennis P., Thomas M.B. and Sotherton N.W. (1994) Structural features of field boundaries which influence the overwintering densities of beneficial arthropod predators. J. Appl. Ecol. 31, 361–370.CrossRefGoogle Scholar
  13. Duso C. and Fontana P. (1996) Mite communities on wild plants surrounding vineyards in North-Eastern Italy with special emphasis on phytoseiids (Phytoseiidae), pp. 261–264. In Proceedings Acarology IX. Vol. 1. (Edited by R. Mitchell, D. Horn, G. Needham and W. Welbourn). Ohio Biological Survey Pub.Google Scholar
  14. Duso C., Torresan L. and Vettorazzo E. (1993) La vegetazione spontanea come riserva di aussilliari: considerazioni sulla diffusione degli Acari Fitoseidi (Acari: Phytoseiidae) in un vigneto e sulle piante spontanee contigue. Boll. Zool. Agr. Bach. 25, 183–203.Google Scholar
  15. Fauvel G. and Cotton D. (1981) Evolution des populations de typhlodromes, Amblyseius aberrans essentiellement, dans une haie d’ormes et un verger de pommiers et observations de leur transport par le vent, pp. 471–479. In Proceedings “6ejournée phytiatrie. Phytopharmacie. Circum méditerranéennes”. J. Coste ed. Technic Offset pub.Google Scholar
  16. Hoying S.A. and Croft B.A. (1977) Comparisons between populations of Typhlodromus longipilus Nesbitt and T. occidentalis Nesbitt: Taxonomy, distribution and hybridization. Ann. Entomol. Soc. Am. 70, 150–159.CrossRefGoogle Scholar
  17. Ivancich Gambaro P. (1973) Il ruolo del Typhlodromus aberrans Oudm. (Acarina: Phytoseiidae) nel controllo biologico degli acari fitofagi dei vigneti del Veronese. Boll. Zool. Agr. Bach. 2, 151–165.Google Scholar
  18. Kambhampati S., Black W.C. and Rai K. S. (1992) Random amplified polymorphic DNA of mosquito species and populations (Diptera: Culicidae): Techniques, statistical, analysis and applications. J. Med. Entomol. 29, 939–945.CrossRefGoogle Scholar
  19. Krantz G.W. (1973) Dissemination of Kampimodromus aberrans by the filbert aphid. J. Econ. Entomol. 66, 575–576.CrossRefGoogle Scholar
  20. Kreiter S. and Sentenac G. (1995) Gestion des populations d’auxiliaires: Recolonisation naturelle ou introduction de phytoséiides en vignobles, pp. 49–63. In Proceedings “Journée d’informations sur les auxiliaires entomophages” (Edited by F. Leclant and J.-N. Reboulet). Valence 15/XI/1995, ANPP. Pub.Google Scholar
  21. Kreiter S., Sentenac G., Weber M. and Valentin G. (1993) Les phytoséiides des vignobles français. Synthèse de huit années de recensement, pp. 597–609. In Proceedings “Troisième conférence internationale sur les ravageurs en agriculture” (Edited by F. Leclant). Montpellier 7-8-9/XII/1993, ANPP Pub.Google Scholar
  22. Kreiter S., Sentenac G., Weber M., Rinville C., Barthes D. and Auger P. (1997) Effets non intentionnels de quelques produits phytopharmaceutiques sur Typhlodromus pyri, Kampimodromus aberrans et Phytoseius plumifer. Phytoma. La défense des végétau. 493, 51–58.Google Scholar
  23. Kreiter S., Tixier M.-S., Auger P., Muckensturm N., Sentenac G., Doublet B. and Weber M. (2000) Phytoseiid mites in vineyards in France (Acari: Phytoseiidae). Acarologi. 41, 77–96.Google Scholar
  24. Lester P.J., Thistlewood H.M.A. and Harmsen R. (2000) Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Exp. Appl. Acarol. 24, 19–33.CrossRefGoogle Scholar
  25. Malison M., Baldacci R., Posenato G. and Girolami V. (1995) Frequency distribution of Kampimodromus aberrans (Oud.) (Acari: Phytoseiidae) in vineyards and optimization of the samplings methods. Frust. Entomol. 18, 153–168.Google Scholar
  26. McMurtry J.A. and Croft B.A. (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 42, 291–321.CrossRefGoogle Scholar
  27. Moraes (de) G.J., McMurtry J.A. and Denmark H.A. (1986) A catalog of the mite family Phytoseiidae: references to taxonomy, synonymy, distribution and habitat. Embrapa-ddt-pub.353 pp.Google Scholar
  28. Munger F. (1942) A method for rearing citrus thrips in the laboratory. J. Econ. Entomol. 35, 373–375.CrossRefGoogle Scholar
  29. Potter C. (1952) An improved apparatus for applying direct sprays and surface films with data on the electrostatic charge on atomized spray fluids. Ann. Appl. Biol. 39, 1–28.CrossRefGoogle Scholar
  30. Probit-Logit analysis® (1993) Probit analysis program. Analysis of mortality assays displaying quantal responses. 3e version. Praxeme, Montpellier, France.Google Scholar
  31. Ragusa S., Papaioannou-Souliotis P., Tsolakis H. and Tsagarakou N. (1995) Acari fitoseidi (Parasitiformes, Phytoseiidae) della Grecia associati a piante forestall a diverse altitudini. Boll. Zool. Agr. Bach. 27, 85–91.Google Scholar
  32. Ragusa S. and Tsolakis H. (1996) A survey of phytoseiid mites (Phytoseiidae) associated with various plants in Sicily, pp. 253–256. In Proceedings Acarology IX. (Edited by R. Mitchell, D. Horn, G. Needham and W. Welbourn). Vol. 1. Ohio Biol. Survey pub, Columbus Ohio.Google Scholar
  33. Roderick G.K. (1992) Post-colonization evolution of natural enemies, pp. 71–86. In Selection Criteria and Ecological Consequences of Importing Natural Enemies. (Edited by W.C. Kauffman and J.R. Nechols). T. Say Pub.Google Scholar
  34. Roderick G.K. (1996) Geographic structure of insect populations: Gene flow, phylogeography and their uses. Annu. Rev. Entomol. 41, 325–352.CrossRefGoogle Scholar
  35. Sabelis M.W. (1985) Predator-prey interaction, pp. 103–129. In Spider Mites: Their Biology, Natural Enemies and Control, vol. 1B (Edited by W. Helle and M.W. Sabelis). Elsevier pub.Google Scholar
  36. Statistica5® (1998) Version 6.0. Statsoft, Inc., USA.Google Scholar
  37. Tixier M.-S., Kreiter S., Auger P. and Weber M. (1998) Colonization of Languedoc vineyards by phytoseiid mites (Acari: Phytoseiidae): Influence of wind and crop environment. Exp. Appl. Acarol. 22, 523–542.CrossRefGoogle Scholar
  38. Tixier M.-S., Kreiter S. and Auger P. (2000) Colonization of vineyards by phytoseiid mites: Their dispersal patterns in the plot and their fate. Exp. Appl. Acarol. 24, 191–211.CrossRefGoogle Scholar
  39. Tixier M.-S., Kreiter S., Croft B. A. and Auger P. (2002) Colonization of vineyards by Kampimodromus aberrans (Oudemans) (Acari: Phytoseiidae): Dispersal from surrounding plants as indicated by random amplified polymorphism DNA typing. Agric. For. Entomol. 255–264.Google Scholar
  40. Tuovinen T. (1993a) Identification and occurrence of phytoseiid mites (Gamasida: Phytoseiidae) in Finnish apple plantations and their surroundings. Entomol. Fenn. 31, 95–113.Google Scholar
  41. Tuovinen T. (1993b) Phytoseiid mites (Acari: Gamasina) in Finnish apple plantations with reference to integrated control of phytophagous. Agric. Sci. Finlan. 2, 7–31.Google Scholar
  42. Tuovinen T. (1994) Influence of surrounding trees and bushes on the phytoseiid mites fauna on apple orchard trees in Finland agriculture. Agric. Ecosyt. Environ. 50, 39–47.CrossRefGoogle Scholar
  43. Tuovinen T. and Rokx J.A.H. (1991) Phytoseiid mites (Acari: Phytoseiidae) on apple trees and in surrounding vegetation in Southern Finland. Densities and species composition. Exp. Appl. Acarol. 12, 35–46.CrossRefGoogle Scholar

Copyright information

© ICIPE 2003

Authors and Affiliations

  1. 1.Ecole Nationale Supérieure Agronomique/Institut National de la Recherche Agronomique, UP d’Ecologie Animale et de Zoologie AgricoleLaboratoire d’AcarologieMontpellier cedex 01France

Personalised recommendations