International Journal of Tropical Insect Science

, Volume 11, Issue 6, pp 865–867 | Cite as

Age-Related Analysis of Adenosine Triphosphatase Activity as Affected by Propyl Gallate in the Drosophilid, Zaprionus Paravittiger

  • J. S. Bains
  • S. C. Khanna
  • S. K. Garg
  • Suraj P. Sharma
Research Article


The specific activity of ATPase in whole body and mitochondrial homogenates declined significantly with age and on propyl gallate (25 μg/ml standard medium) feeding in both the sexes of Zaprionus paravittiger reared at 26 ± 2°C. Maximum activity was observed during the reproductive period.

Key Words

Ageing antioxidant ATPase mitochondria 


L’activité spécifique de ATPase en entier consistance et mitochondrial homogenates diminuere significativement aux âge et sur repasant propyl gallate (25 μg/ml médium etendard) en deux les sexes de Zaprionus paravittiger arriére à température 26 ± 2°C. L’activité maximum observé pendant les période reproduction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dalterio S. C, Esquivel S. B. and Gandhi V. (1988) Testicular Ca+2 ATPase activities in mice: Effect of age and gonadotropin administration. Life Sci. 42, 969–978.CrossRefGoogle Scholar
  2. Emanuel N. M. and Obukhova L. K. (1978) Types of experimental delay in ageing patterns. Exp. Gerontol. 13, 25–29.CrossRefGoogle Scholar
  3. Fiske C. H. and Subba Row Y. (1925) The colorimetric determination of phosphorus. J. Bio. Chem. 66, 265–276.Google Scholar
  4. Frolkis V. V. (1982) Ageing and life prolonging processes (Edited by Frolkis V. V.), pp. 1–380. Springer-Verlag, New York.CrossRefGoogle Scholar
  5. Gabibov M. M. (1986) Effect of hyperbaric oxygenation on the proton ATPase activity of mitochondria from different rat tissues. UKR Biokhim-Zh. 58, 81–83.Google Scholar
  6. Holliday R. (1989) Food, reproduction and longevity: Is the extended life span of calorie-restricted animals an evolutionary adaptation? Bio Essay 10, 125–127.Google Scholar
  7. Kielley W. W. (1969) Mg+2 activated muscle ATPase. In Methods in Enzymology (Edited by Colowick S. P. and Kaplan N. O.), Vol. II, pp. 588–595. Academic Press, New York.Google Scholar
  8. Lowry O. H., Rosenborough N. J., Farr A. L. and Randall R. J. (1951) Protein measurement with Folin-phenol reagent. J. Biol. Chem. 193, 265–275.Google Scholar
  9. Lunets E. F., Kuchuro S. V. and Kostyuk V. A. (1986) Effect of liver peroxidation on the activity of Mg+2-ATPase in brain and liver. Vopr Med Khim 32, 52–55.Google Scholar
  10. Massie H. R. and Williams T. R. (1979) Increased longevity of Drosophila melanogaster with lactic and gluconic acids. Exp. Gerontol. 14, 109–115.CrossRefGoogle Scholar
  11. Okabe F., Hess M. L., Oyenra M. and Ito H. (1983) Characterization of free radical mediated damage of canine cardiac sacroplasmic reticulum. Arch. Biochem. Biosphys. 225, 164–177.CrossRefGoogle Scholar
  12. Rai N. and Sharma S. P. (1986) Age-related changes in malondialdehyde in Caryedon serratus, Oliver (Coleoptera). Age 2, 53–56.Google Scholar
  13. Sohal R. S. (1976) Ageing changes in insect flight muscle. Gerontology 22, 317–333.CrossRefGoogle Scholar
  14. Wadhwa R., Rai N. and Sharma S. P. (1986) Life span studies in Zaprionus paravittiger with sodium hypophospite feeding. Gerontology 32, 141–147.CrossRefGoogle Scholar
  15. Wadhwa R. and Sharma S. P. (1989) Effect of sodium hypophosphite feeding on adenosine triphosphatase activity in ageing Zaprionus paravittiger (Diptera). Gerontology 35, 14–18.CrossRefGoogle Scholar
  16. Zuckerman B. M. and Geist M. A. (1981) Effect of nutrition and chemical agents on lipofuscin formation. In Age Pigments (Edited by Sohal R. S.), pp. 283–302. Elsevier/North-Holland Biomedical Press, New York.Google Scholar

Copyright information

© ICIPE 1990

Authors and Affiliations

  • J. S. Bains
    • 1
  • S. C. Khanna
    • 1
  • S. K. Garg
    • 1
  • Suraj P. Sharma
    • 1
  1. 1.School of Life SciencesGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations