Advertisement

Respiratory Rate and Energy Utilization by Macrotermes Carbonarius Hagen) (Isoptera, Termitidae, Macrotermitinae) in Penang, Malaysia

  • Lilory D. McComie
  • G. Dhanarajan
Research Article

Abstract

There were significant variations in oxygen consumption and carbon dioxide evolution of Macrotermes carbonarius (Hagen) among the soldiers and workers over a 10-hr experimental period. This suggested that the insects exhibited rhythmic respiratory behaviour in spite of being separated from their nest system and in the stressful situation of confinement of a respiratory flask at 29°C. The correlation between body fresh weight (mg) and respiratory rate ml O2/mg fresh wt/hr was significant. A respiratory quotient of 1.0–1.1 suggested that glucose was the respiratory metabolic substrate utilized and that both aerobic and anaerobic processes could have been taking place. Most of the leaf litter imported into the mound was utilized by the fungus on the fungus comb for metabolism with the release of carbon dioxide, heat and water. The heat released was sufficient to maintain the brood chamber temperature at 29.1 ± 03°C despite fluctuations of the ambient temperature and the temperature of the surrounding soil.

Key Words

Macrotermes carbonarius respiratory rate oxygen consumption carbon dioxide liberation heat production water production oxidation of glucose mound temperature 

Résumé

Cette étude montre qu’il y avait des variations importantes dans l’ utilisation variation d’oxygène at l’évolution le gazearbonique parmi des soldatset des ouvriers de M. carbonarius dans une periode d’experimentation de dix heurs. Ce semble indiquer que les insectes se montrent une maniere respiratoire rhythmique malgré leur sepération de systeme de termitière. A 20°C le rapport entre le poids frais du corps (mg) et le taux de respiration rel O2/mg poids frais/hr était important. Un quotient respiratoire de (1.0–1.1) indique que le glucose était le substrat metabolique utilise et que les procès aerobique et anaerobique ont en lieu.

La plupart d’énergie de la litière de feuilles apportee dans le nid était utilisé par les fongussur le meule à champignons resultant en l’évolution de gaz carbonique, de la chaleur et de l’eau. La chaleur libere était suffisante pour maintenir la température de couver à 29.1 ± 0.2°C malgré les fluctuations de la temperature ambiente et de celle du sol environment.

Mots Cléfs

Macrotermes carbonarius taux de respiration utilization d’oxygène evolution de gaz carbonique production de chaleur production de l’ean oxidation de glucose temperature la termitière 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T. (1978) The role of termites in the breakdown of dead wood in the forest floor of Pasoh Study Area. Malay Nat. J. 30: 391–404.Google Scholar
  2. Abe, T. (1979a) Studies on the distribution and ecological role of termites in a lowland rainforest of West Malaysia 2. Food and feeding habitats of termites in Pasoh Forest. Jpn. J. Ecol. 29: 121–135.Google Scholar
  3. Abe, T. (1979b) Studies on the distribution and ecological role of termites in lowland rainforest 3. Distribution and abundance of termites in Pasoh Forest Reserve. Jpn. J. Ecol. 29: 337–351.Google Scholar
  4. Abe, T. (1980) Studies on the distribution and ecological role of termites in a lowland rainforest of West Malaysia. 4. The role of termites in the process of wood decomposition in Pasoh Forest Reserve. Rev. Ecol. Biol. Sol. 17: 23–40.Google Scholar
  5. Darlington J. P. E. C. ( 1984) A method for sampling populations of large termite nests. Ann. Appl. Biol. 104: 427–436.CrossRefGoogle Scholar
  6. Hardy, R. N. (1972) Temperature and Animal Life. Institute of Biology’s Studies in Biology No. 35, Edward Arnold Publishers, London.Google Scholar
  7. Harper, H. A. (1973) Review of Physiological Chemistry. Large Medical Publishers, California.Google Scholar
  8. Hébrant, F. (1970) Circadian rhythm of respiratory metabolism in whole colonies of the termites Cubitermes exiguus. J. Insect Physiol. 16: 1229–1235.CrossRefGoogle Scholar
  9. Ho, T. M. (1977) The biology of the termite Macrotermes carbonarius with respect to the foraging behaviour and aggression. M. Sc. Dissertation. Universiti Sains Malaysia.Google Scholar
  10. Jander, R. and Daumer, K. (1974) Guideline and gravity of orientation of blind termites foraging in the open. Insectes Soc. 21: 45–69.CrossRefGoogle Scholar
  11. John, O. (1925) Termiten von Ceylon der Malayischen halbinisel. Sumatra, Java und den Aru-Inseln. Treubia, D, 360–419.Google Scholar
  12. La Fage, J. P. and Nutting, W. C. (1979) Respiratory gas exchange in the dry wood termite Marginitermes hubbardi (Banks) (Isoptera: Kalotermitidae). Sociobiol. 4: 257–267.Google Scholar
  13. Lee, K. and Wood, T. (1971) Termites and Soils. Academic Press, London and New York.Google Scholar
  14. Luscher, M. (1962) Air-conditioned termite nests. Sci. Am. 205: 138–145.CrossRefGoogle Scholar
  15. Matsumoto, T. (1976) The role of termites in an Equatorial Rainforest of West Malaysia 1. Population density; biomass, carbon, nitrogen and calorific content and respiratory rate. Oecologia (Berlin) 22: 153–178.CrossRefGoogle Scholar
  16. Matsumoto, T. and Abe, T. (1979) The role of termites in an equatorial rainforest of West Malaysia II. Leaf litter. Consumption on the forest floors. Oecologia (Berlin) 38: 261–274.CrossRefGoogle Scholar
  17. McComie, L. D. (1981) An ecological study of Macrotermes carbonarius (Hagen) (Insecta, Termitidae, Macrotermitinae). M.Sc. thesis. Universiti Sains Malaysia, Malaysia.Google Scholar
  18. Peakin, G. J. and Josens, P. G. (1978) Respiration and energy flow. In Production Ecology of Ants and Termites (Edited by Brian M. V.), pp. 111–163.Google Scholar
  19. Rohrmann, G. F. (1977) Biomass, distribution and respiration of colony components of Macrotermes ukuzii Fuller (Isoptera, Termitidae, Macrotermitinae). Sociobiol. 2: 283–293.Google Scholar
  20. Rohrmann, G. F. (1978) The original, structure and nutritional importance of the comb in two species of Macrotermitinae (Insecta, Isoptera). Pedobiologia 18: 89–98.Google Scholar
  21. Roonwal, M. L. (1969) Termites of the oriental region. In Biology of Termites (Edited by Krishna, K. and Weesner F. M.), Vol. 11, pp. 315–384. Academic Press, New York and London.Google Scholar
  22. Sands, W. A. (1969) The association of termites and fungi. In Biology of Termites (Edited by Krishna, K. and Weesner F.). Vol. I, pp. 495–524. Academic Press, New York and London.CrossRefGoogle Scholar
  23. Sands, W. A. (1972) Problems in attempting to sample tropical subterranean termite populations. Ecologia Polska 20: 23–31.Google Scholar
  24. Umbriet, W. W., Burris, R. R. and Stauffer, J. F. (1972) Manometric Techniques. Fifth edition. Burges Publishing, Co., Minneapolis.Google Scholar
  25. Watson, J. P. (1972) Some observations on the water relations of mounds of Macrotermes natalensis (Haveland). Insectes Soc. 19: 87–93.CrossRefGoogle Scholar
  26. Wood, T. G. and Sands, W. A. (1978) The role of termites in ecosystems. In Production Ecology of Ants and Termites (Edited by Brian M. V.), pp. 245–292, IBP Handbook 13, Cambridge University Press.Google Scholar
  27. Zar, J. H. (1974) Biostatistical Analysis, First Edition. Prentice Hall, New Jersey.Google Scholar

Copyright information

© ICIPE-ICIPE Science Press 1990

Authors and Affiliations

  • Lilory D. McComie
    • 1
  • G. Dhanarajan
    • 2
  1. 1.Research Division, Ministry of Food Production and Marine ExploitationCentral Experiment Station, Centeno via Arima P.O.Trinidad and Tobago
  2. 2.School of Biological SciencesUniversiti Sains MalaysiaMinden, PenangMalaysia

Personalised recommendations