Advertisement

Action of Juvenile Hormone and Ecdysone in the Metamorphic Endocrine Centres

  • Mamdouh H. Idriss
Research Article

Abstract

The relationship between corpus allatum (CA) and prothoracic gland (PG) activities has been examined during postfeeding larval and prepupal stages of en-silkworm, Philosamia ricini (Dru.). Using the isolated larval abdomen technique, the critical period of ecdysone (MH) was determined. It was 114 hr immediately after the beginning of cocoon spinning at 20 ± 2°C. To study the CA activity a histometric method was used. CA volumes suddenly increased at the prepupal stage. From these data a clear positive correlation between CA and PG activities was recognized.

Brainless Ph. ricini pupae, a highly reliable bioassay organism for detecting prothoracicotropic (PTTH)-like effects, were produced. The debraination of Ph. ricini larvae after the critical period of PTTH, produced brainless pupae. This bioassay organism was used for studying the action of juvenile hormone (JH) and MH in the metamorphic endocrine centres during the absence of the brain.

Injection of 5 μg altozar (JHA) into debrained Ph. ricini larvae accelerated pupation (12.24 ± 0.36 instead of 16.51 ± 0.19 days). Moreover the produced brainless pupae moulted to second brainless pupae. The injection of 5 μg JHA into brainless pupae or isolated larval abdominae of Ph. ricini did not show any effects. Brainless Ph. ricini moths were obtained after injecting the brainless pupae with MH (10 μg-40 μg/p). The injection of high concentrations of MH (≥ 70 μg/p) into brainless pupae activated the CA and produced pupal-adult intermediates. The present data reveal that the PTTH at low concentrations, permits the action of a JHA in the PG. Also it shows that the MH at high levels activates the CA.

Key Words

Corpus allatum prothoracic gland juvenile hormone ecdysone prothoracicotropic effects metamorphic endocrine centres 

Résumé

La relation entre les activités de corpus allatum (CA) et celles de la glande prothoracique (PG) a été étudiée durant les stades larvaires (la période post nutritive larvaire) ainsi que le stade prepupal du vers à soie de ricin Philosamia ricini (Dru). En utilisant la technique d’abdomaines larvaires isolés, il a été possible de l’ecdysone (MH), comme étant de 114 hrs immédiatement après le commençement de la filature du coccon á la température de 20 ± 2°C le volume de CA a augmenté soudainement au stade previrginal.

De ces derniers résult↦s l’on peut déduire une claire correlation des activités de CA et PG.

Il a été possible de produire des pupes du vers a soie de Ricin Ph. ricini sans cerveau. Ces dernières représentent un organisme pour éssais biologiques auquels on peut faire hautement confiance, pour la détection de l’activité de l’hormone qui influe sur la glande prothoracique (PTTH). Les larves dont on a enlevé le cerveau après la periode critique de secretion de PTTH, ont produit des pupes sans cerveau. Cet organisme de bioéssais a été utilisé pour l’étude de l’action de l’hormone juvenile (JH) et MH dans les centres endocriniens métamorphiques durant l’abscence du cerveau.

L’injection de 5μg d’Altozar (JHA) a des larves decervelés (dont on a enlevé le cerveau) de Ph. ricini, a accéléré la transformation en pupe (12.24 ± 0.36 au lieu 16.51 ± 0.19 jours). Et qui plus est la production de pupe sans cerveau ont mue en seconde pupe sans cerveau. L’injection de 5 μg JHA á des pupes sans cerveau ou á des abdomaines larvaires isolés de Ph. ricini, n’a donné aucun résultat. Après l’infection des pupes décervelés avec MH (10 μg–40 μg/p) des papillons de Ph. ricini dans cerveau ont émergés. L’infection de hautes concentrations de (MH ≥ 100 μg/p) á des pupes sans cerveau, a activé le CA et a produit des individus intermédiaires pupe-adultes, les présentes résult↦s ont révéle que PTTH a de basses concentrations a permis l’action de JHA sur la glande prothoracique PG. Il est aussi évident que le MH a de hautes concentrations active le CA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bollenbacher, W., Katahira, E., O’ Brien, M., Gilbert, L., Thomas, M., Agui, N. and Baumhover, A. (1984) Insect prothoracicotropic hormones. Evidence for two molecular forms. Science 224: 1243–1245.CrossRefGoogle Scholar
  2. Bollenbacher, W. E., Smith, S. L., Goodman, W. and Gilbert, L. (1981) Ecdysteroid titre during larval-pupal-adult development of the tobacco hornworm Manduca sexta. Gen. Comp. Endocrinol. 44: 302–306.CrossRefGoogle Scholar
  3. Bryan, M. D., Brown, T. M. and Monroe, R. (1974) Effect of ecdysterone on ethyl trimethyl dodecadienoate juvenile hormone action Oncopeltusfasciatus. J. Insect Physiol. 20: 1057–1062.CrossRefGoogle Scholar
  4. Cymborowski, B. and Stolarz, G. (1979) The role of juvenile hormone during larval-pupal transformation of Spodoptera littoralis: Switch over in the sensitivity of the prothoracic glands to juvenile hormone. J. Insect Physiol. 25: 939–942.CrossRefGoogle Scholar
  5. De Wilde, J. and Stegwee, D. (1958) Two major effects of CA in the adult Colorado beetle. Arch Neerl. Zool. 1: 277–289.Google Scholar
  6. Gilbert, L. (1962) Maintenance of the prothoracic gland by the juvenile hormone in insects. Nature, London 193: 1205–1207.CrossRefGoogle Scholar
  7. Gilbert, L. and King, D. S. (1973) Physiology of growth and development: endocrine aspects. In Physiology of Insecta (Edited by Rockstein M.), pp. 249–370. Academic Press, N.Y.CrossRefGoogle Scholar
  8. Gomma, A. (1973) Biological studies on the eri silkworm A. ricini. Z. Angew. Entomol. 74: 120–126.CrossRefGoogle Scholar
  9. Gruetzmacher, M., Gilbert, L., Granger, N., Goodman, W. and Bollenbacher, W. (1984) The effect of juvenile hormone on prothoracic gland function during the larval-pupal development of Manduca sexta: An in situ and in vitro analysis. J. Insect. Physiol. 30, 331–340.CrossRefGoogle Scholar
  10. Fukuda, D. (1940) Induction of pupation in silkworm by transplanting the prothoracic gland. Proc. Imp. Acad. Japan 16: 417–420.CrossRefGoogle Scholar
  11. Hiruma, K. (1980) Possible roles of juvenile hormone in the prepupal stage of Mamestra brassicae. Gen. Comp. Endocrinol. 41: 392–399.CrossRefGoogle Scholar
  12. Hiruma, K. and Agui, N. (1982) Larval-pupal transformation of the prothoracic glands of Mamestra brassicae. J. Insect Physiol. 28: 89–95.CrossRefGoogle Scholar
  13. Hiruma, K., Shimada, H. and Yagi, N. (1978) Activation of the prothoracic gland by juvenile hormone and prothoracicotropic hormone in Mamestra brassicae. J. Insect Physiol. 24: 215–220.CrossRefGoogle Scholar
  14. Huber, R. and Hoppe, W. (1965) Zur chemic des Ecdysons. VII. Die Kristallund Molekulstrukturanalyse des insektenver-puppungs hormons Ecdyson mit der automatisierten Flatmolekulmethode. Chem. Ber. 98: 2403–2424.CrossRefGoogle Scholar
  15. Idriss, M. (1986) Prothoracicotropic hormone: an overview. 6th Int. Congr. Pestic. Chem. Canada 2B-10.Google Scholar
  16. Idriss, M. (1988) The prothoracic gland activities during the last larval instar of lepidopterous insects. Pestic. Sci. 23: 358–362.Google Scholar
  17. Idriss, M. and Abdelatif, M. (1982) Detection of juvenile hormone activity from invertebrate and vertebrate tissues by using the scoring assay of Philosamia ricini pupae. Proc. 2nd Egyptian-Hungarian Conf. Plant Prot. pp. 78–90.Google Scholar
  18. Idriss, M., Elgayar, F. and Rawash, I. (1981) Operated Philosamia ricini and Bombyx mori larvae as a brain hormone bioassay test organisms. Z. Angew. Entomol. 92: 371–374.CrossRefGoogle Scholar
  19. Idriss, M., Sherby, S., Morshedy, M. and Mansour, N. (1984) Prothoracicotropic hormone-like effects of biogenic amines in lepidopterous larvae. In Insect Neurochemistry and Neurophysiology (Edited by Borkover, A. and Kelly T.), pp. 385–387. Plenum Press, N.Y.CrossRefGoogle Scholar
  20. Krishnakumaran, A. and Schneiderman, H. (1963) Brain hormone activity of certain terpene derivatives in insects. Am. Zool. 3, 532.Google Scholar
  21. Krishnakumaran, A. and Schneiderman, H. (1965) Prothoracotrophic activity of compounds that mimic juvenile hormone. J. Insect Physiol. 11: 1517–1532.CrossRefGoogle Scholar
  22. Legay, J. M. (1950) Note sur l’evolution des corpora allata au cours de vie larvaire de Bombyx mori. C. R. Soc. Biol., Paris 144: 512–513.Google Scholar
  23. Lezzi, M. and Wyss, C. (1976) The antagonism between juvenile hormone and ecdysone. In The Juvenile Hormones (Edited by Gilbert L.), pp. 252–269. Plenum Press, N.Y.CrossRefGoogle Scholar
  24. Novak V. J. A. (1966) Insect hormones. Firstedition. Methuen & Co. Ltd.Google Scholar
  25. Pflugfelder, O. (1948) Volumetrische Untersuchungen an den corpora allata der Honigbiene Apis mellifica. Biol. Zentralbl. 66: 211–235.Google Scholar
  26. Röller, H., Dahm, K. H., Sweeley, C. and Trost, C. (1967) The structure of juvenile hormone. Angew. Chem. Int. Ed. Engl. 6: 179–180.CrossRefGoogle Scholar
  27. Safranek, L., Cymborowski, B. and Williams, C. (1980) Effectsof juvenile hormone on ecdysone-dependent development in the tobacco hornworm, Manduca sexta. Biol. Bull. Mar. Biol. Lab Woods Hole 158: 248–256.CrossRefGoogle Scholar
  28. Schneiderman, H. and Gilbert, L. (1964) Control of growth and development in insects. Science N.Y. 143: 325–333.CrossRefGoogle Scholar
  29. Silhacek, D. L. and Oberlander, H. (1975) Time dosage studies of juvenile hormone action on the development of Plodia interpunctella. J. Insect Physiol. 21: 153–162.CrossRefGoogle Scholar
  30. Socha, R. and Sehnal, F. (1972) Inhibition of adult development in Tenebrio molitor by insect hormones and antibiotics. J. Insect Physiol. 18: 317–337.CrossRefGoogle Scholar
  31. Socha, R. and Sehnal, F. (1973) Inhibition of insect development by simultaneous action of prothoracic gland hormone and juvenile hormone. J. Insect Physiol. 19: 1449–1454.CrossRefGoogle Scholar
  32. Wigglesworth, V. B. (1936) The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus. Q. J. Microsc. Sci. 79: 91–119.Google Scholar
  33. Williams, C. (1952) Physiology of insect diapause. IV—The brain and prothoracic glands as an endocrine system in the Cecropia silkworm. Biol. Bull. Woods Hole, 103: 120–138.CrossRefGoogle Scholar
  34. Williams, C. M. (1959) The juvenile hormone I endocrine activity of the adult Cecropia silkworm. Biol. Bull. Mar. Biol. Lab. Woods Hole 116: 323–338.CrossRefGoogle Scholar
  35. Williams, C. (1968) Ecdysone and ecdysone-analogues. Their assay and action on diapausing pupa of the Cynthia silkworm. Biol. Bull. Woods Hole 134: 344–355.CrossRefGoogle Scholar
  36. Willis, J. and Hollowell, M. (1976) The interaction of juvenile hormone and ecdysone: antagonistic, synergistic or permissive. In The Juvenile Hormones (Edited by Gilbert L.), pp. 270–287. Plenum Press, N.Y.CrossRefGoogle Scholar
  37. Yagi, S. (1976) The role of juvenile hormone in diapause and phase variation in some lepidopterous insects. In The Juvenile Hormones (Edited by Gilbert L.), pp. 288–300, Plenum Press, N.Y.CrossRefGoogle Scholar

Copyright information

© ICIPE-ICIPE Science Press 1990

Authors and Affiliations

  • Mamdouh H. Idriss
    • 1
  1. 1.Department of Plant Protection, Faculty of AgricultureUniversity of AlexandriaAlexandriaEgypt

Personalised recommendations