Characterization of Antigens from Extracts of Fed Ticks Using Sera from Rabbits Immunized with Extracted Tick Antigen and by Successive Tick Infestation

  • A. O. Mongi
  • S. Z. Shapiro
  • J. J. Doyle
  • M. P. Cunningham
Research Article


Immune resistance to infestation by an ixodid tick, Rhipicephalus appendiculatus, the vector of the African cattle disease, East Coast Fever, was induced in rabbits by either repeated tick feeding or immunization with tick extracts. In addition to resistance to tick infestation, tick extract immunization led to a reduction in the viability of eggs laid by ticks feeding on the immunized host. Resistance to infestation/by ixodid ticks has previously been reported by others to have a humoral immune component. Therefore, antibodies from resistant host animals were used to detect the tick antigens they recognized as an-approach to identification of the target antigen(s) for the observed immune responses on feeding ticks. In crossed immune electrophoresis two antigens were detected using sera from animals made resistant by multiple tick infestations. Sera from extract immunized animals detected these antigens and nine others. The tick antigens detected by both sets of sera in crossed immune electrophoresis were radiolabelled with [35S]amino acids. No labelled antigens were detected by Staphylococcus aureus mediated immune precipitation with sera from hosts made resistant by multiple infestations. Antibodies from extract-immunized animals identified nine protein antigens by S. aureus immunoprecipitation. The molecular weights of these antigens as assessed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis were 180,000; 140,000; 130,000; 98,000; 92,000; 88,000; 85,000 and 82,000. The rate of synthesis of these antigens appeared to vary in relation to the tick feeding cycle.

Key Words

Rhipicephalus appendiculatus radiolabelled antigens immunization immunodiffusion crossed immunoelectrophoresis immunoprecipitation Staphylococcus aureus 


La resistance immunitaire à l’infestation par les tiques Rhipicephalus appendiculatus vecteur de la fièvre costale est-africaine chez le bétail, est induite chez le lapin aussi bien par piqûre répétée des tiques sur l’animal que par immunisation avec des extraits des tiques. En plus de la resistance à l’infestation par les tiques, l’extrait d’immunisation provoque une reduction de la viabilité des oeufs produits par des tiques nourries sur des animaux immunisés. La resistance à l’infestation par des tiques (ixodides) a déjà été rapporté par d’autres comme etant un composé humoral immunitaire. Aussi les anticorps provenant des animaux resistants furent utilisés pour détecter les antigènes des tiques qui’ls reconnaissent comme approche pour l’identification des antigènes cibles pour l’observation des réponses immunitaires sur des tiques s’alimentant. Par immunoélectrophorèse croisée on a détecté des antigènes en utilisant des sera provenant des animaux rendus résistants par des multiples infestations par des tiques.

Les sera provenant des extraits d’animaux immunisés détectent ces antigènes en plus de neuf autres. Les antigenes des tiques détectés par les deux lots de sera en immunoélectrophorèse croisée ont été marqués avec les [35S]acides aminés. Aucun marquage d’antigènes n’a été détecté par Staphylococcus aureus dirigeant une précipitation immunologigue avec les sera provenant des animaux hotes rendus resistants par des multiples infestations. Les anticorps provenant des animaux immunisés par des extraits des tiques parviennent à identifier neuf antigènes par immunoprecipitation avec S. aureus Les poids moléculaires de ces antigènes révélés par electrophorèse en SDS en gel de plyacrylamide sont respectivement de 180.000; 140.000; 130.000; 98.000; 92.000; 88.000; 85.000 and 82.000. Le taux de synthèse de ces antigènes semblent varier en relation avec le cycle de piqûre des tiques.

Mots Cléf

Rhipicephalus appendiculatus antigènes marqués immunisation immunoddifusion immunoélectrophorèse croisée immunoprécipitation Staphylococcus aureus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman S., Floyd M. and Sonenshine D. E. (1980) Artificial immunity to Dermacentor variabilis (Acari: Ixodidae): Vaccination using tick antigens. J. med. Ent. 17, 391–397.CrossRefGoogle Scholar
  2. Ackerman S., Clare F. B., McGill T. W. and Sonenshine D. E. (1981) Passage of host serum components, including antibody, across the digestive tract of Dermacentor variabilis (Say). J. Parasit. 67, 737–740.CrossRefGoogle Scholar
  3. Allen J. R., Doube B. M. and Kemp D. H. (1977) Histology of bovine skin reactions to Ixodes holocyclus Neumann. Can. J. comp. Med. 41, 26–35.PubMedPubMedCentralGoogle Scholar
  4. Allen J. R. and Humphreys S. J. (1979) Immunization of guinea pigs and cattle against ticks. Nature 280, 491–493.CrossRefGoogle Scholar
  5. Askenase P. W. (1980) Immunopathology of parasitic diseases: Involvement of basophils and mast cells. Immunopathology 2, 417–442.Google Scholar
  6. Askenase P. W., Bagnall B. G. and Worms M. J. (1982) Cutaneous basophil associated resistance to ectopharasites (ticks). I. Transfer with immune serum or immune cells. Immunology 45, 501–511.PubMedPubMedCentralGoogle Scholar
  7. Bailey K. P. (1960) Notes on the rearing of Rhipicephalus appendiculatus and their infection with Theileria parva for experimental transmission. Bull, epizoot. Dis. Afr. 8, 33–43.Google Scholar
  8. Balashov Y. S. (1972) Bloodsucking ticks (Ixodidea)—vectors of disease of man and animals. Misc. Publ. ent. Soc. Am. 8, 161–376.Google Scholar
  9. Bell J. F. (1945) The infection of ticks (Dermacentor variabilis) with Pasturella tularensis. J. infect. Dis. 76, 83–95.CrossRefGoogle Scholar
  10. Bell J. F., Steward S. J. and Wikel S. K. (1979) Resistance to tick-borne Francisella tularensis by tick-sensitized rabbits: Allergic klendusity. Am. J. trop. Med. Hyg. 28, 876–880.CrossRefGoogle Scholar
  11. Bowessidjaou J., Brossard M. and Aeschljminn A. (1977) Effects and duration of resistance acquired by rabbits on feeding and egg laying in Ixodes ricinup L. Experientia 33, 528–530.CrossRefGoogle Scholar
  12. Bram R. A. (1975) Tick-borne livestock diseases and their vectors. I. The global problem. Wld A. Rev. 16, 1–5.Google Scholar
  13. Brossard M. (1976) Relations immunologiques entre bovins et tiques, plus particulièrement entre bovins et Boophilus microplus. Ada trop. 33, 15–36.Google Scholar
  14. Brown S. J., Graziano F. M. and Askenase P. W. (1982) Immune serum transfer of cutaneous basophil-associated resistance to ticks: Mediation by 7S lgG1, antibodies. J. Immun. 129, 2407–2412.PubMedGoogle Scholar
  15. Brown S. J., Shapiro S. Z. and Askenase P. W. (1984) ChCumulative effects of host resistance immune resistance. I. Immunization of guinea pigs with Amblyomma americanum-derived salivary gland extracts and identification of an important salivary gland protein antigen with guinea pig anti-tick antibodies. J. Immun. 133, 3319–3325.PubMedGoogle Scholar
  16. Chiera J. W., Newson R. M. and Cunningham M. P. (1985) Cumulative effects of host resistance on Rhipicephalus appendiculatus Neumann (Acarina: Ixodiadae) in the laboratory. Parisitology 90, 401–408.CrossRefGoogle Scholar
  17. Francis J. and Little D. A. (1964) Resistance of Drought master cattle to tick infestation and babesiosis. Aust. vet. J. 40, 247–253.CrossRefGoogle Scholar
  18. Fujisaki K. (1978) Development of acquired resistance and precipitating antibody in rabbits experimentally infested with females of Haemaphysalis longicomis (Ixodoidea: Ixodidae). Natn. Inst. Anim. Hlth Quart. 18, 27–38.Google Scholar
  19. Garin A. S. and Grabarev P. A. (1972) Protective reactions in rabbits and guinea pigs when repeatedly exposed to Rhipicephalus appendiculatus (Latr. 1806) ticks. Medit. Parazit. Parazit. Bolezni 41, 274–279.Google Scholar
  20. Harrington J. C., Fenton J. W. and Pert J. H. (1971) Polymer-induced precipitation of antigen-antibody complexes: ‘Precipiplex’ reactions. Immunochemistry 8, 413–421.CrossRefGoogle Scholar
  21. Irvin A. D. and Brocklesby D. W. (1970) Rearing and maintaining Rhipicephalus appendiculatus in the laboratory. J. Inst. Anim. Techn 21, 106–112.Google Scholar
  22. Kessler S. W. (1975) Rapid isolation of antigens from cells with a Staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes, with protein. A. J. Immun. 115, 1617–1624.PubMedGoogle Scholar
  23. Kohler G., Hoffman G., Horchner F. and Weiland G. (1972) Immunbiologlsche Untersuchungen an Kaninchen mit Ixodiden-Infestationen. Munch. Tieraerztl. Wochenschr. 80, 396–400.Google Scholar
  24. Lindmark R., Thoren-Tolling K. and Sjoquist J. (1983) Binding of immunoglobulins to protein A and immunoglobulin levels in mammalian sera. J. immun. Meth. 62, 1–13.CrossRefGoogle Scholar
  25. Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J. (1951) Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275.PubMedGoogle Scholar
  26. Maizel J. V. Jr (1971) Polyacrylamide gel electrophoresis of viral proteins. Meth. Virol. 5, 179–246.CrossRefGoogle Scholar
  27. Newson R. M. and Castro J. J. de (1983) Host resistance to R. appendiculatus infestation and transmission of T. parva. ICIPE Ann. Rpt 11, 33.Google Scholar
  28. Nogge G. and Giannetti M. (1980) Specific antibodies: A potential insecticide. Science 209, 1023–1029.CrossRefGoogle Scholar
  29. Ouchterlony O. (1958) Diffusion-in-gel methods for immunological analysis. In Progress in Allergy (Edited by Kallos P.), Vol. 5, pp. 1–78. Karger, Basel.PubMedGoogle Scholar
  30. Riek R. F. (1962) Studies on the reactions of animals to infestation with ticks. VI. Resistance of cattle to infestation with the tick Boophilus microplus (Canestrini). Aust. J. agric. Res. 13, 532–550.CrossRefGoogle Scholar
  31. Roberts J. A. and Kerr J. D. (1976) Boophilus microplus: Passive transfer of resistance in cattle. J. Parasit. 62, 485–488.CrossRefGoogle Scholar
  32. Shapiro S. Z. and Young J. R. (1981) An immunochemical method for mRNA purification: Application to messenger RNA encoding trypanosome variable surface antigen. J. biol. Chem. 256, 1495–1498.PubMedGoogle Scholar
  33. Solomon K. R. (1983) Acaricide resistance in ticks. Adv. Vet. Sci. comp. Med. 27, 273–296.PubMedGoogle Scholar
  34. Steelman C. D. (1976) Effects of external and internal arthropod parasites on domestic livestock production. A. Rev. Ent. 21, 155–178.CrossRefGoogle Scholar
  35. Trager W. (1939) Acquired immunity to ticks. J. Parasit. 25, 57–81.CrossRefGoogle Scholar
  36. Weeke B. (1973) Crossed immunoelectrophoresis. Scand. J. Immun. suppl. 1 2, 47–56.CrossRefGoogle Scholar
  37. Wharton R. H. (1976) Tick-borne livestock diseases and their vectors. V. Acaricide resistance and alternative methods of tick control. Wld A. Rev. 20, 8–15.Google Scholar
  38. Whelan A. C., Richardson A. C. and Wikel S. K. (1984) Ixodid tick antigens recognized by the infested host.: Immunoblotting studies. IRCS med. Sci. 12, 901–911.Google Scholar
  39. Wikel S. K. (1980) Host resistance to tick-borne pathogens by virtue of resistance to tick infestation. Ann. trop. Med. Parasit. 74, 103–104.CrossRefGoogle Scholar
  40. Wikel S. K. (1981) The induction of host resistance to tick infestation with a salivary gland antigen. Am. J. trop. Med. Hyg. 30, 284–288.CrossRefGoogle Scholar
  41. Wikel S. K. and Allen J. R. (1982) Immunological basis of host resistance to ticks. In Physiology of Ticks (Edited by Obenchain F. D. and Galun R.), pp. 169–196. Pergamon Press, Oxford.CrossRefGoogle Scholar
  42. Willadsen P. (1980) Immunity to ticks. Adv. Parasit. 18, 239–313.Google Scholar

Copyright information

© ICIPE 1986

Authors and Affiliations

  • A. O. Mongi
    • 1
  • S. Z. Shapiro
    • 2
  • J. J. Doyle
    • 2
  • M. P. Cunningham
    • 1
  1. 1.The International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya
  2. 2.International Laboratory for Research on Animal Diseases (ILRAD)NairobiKenya

Personalised recommendations