Advertisement

Transaminases During Development and Aging of the Bruchid, Zabrotes Subfasciatus (Boh.) (Coleoptera: Bruchidae)

  • Surinder Pal Kaur
  • Dalbinder Singh Sidhu
  • S. S. Dhillon
  • Nirmal Kumar
Article

Abstract

The activity of glutamate-pyruvate transaminase (GPT) increases regularly as the fourth instar larva of Zabrotes subfasciatus develops into prepupa. On the other hand, glutamate-oxaloacetate transaminase (GOT) activity increases significantly (P < 0.05) during the first 12 hr, and then remains at a sufficiently constant level during the subsequent development of this larval instar except at 36 hr of development. However, at the time of prepupation, the GOT and GPT-activities show a decline, which is subsequently followed by an increase during the rest of the prepupal development. The activity of GOT is quite high during the early pupal life, i.e. up to 120 hr. On the other hand, GPT-activity falls significantly (P < 0.05) during the first 24 hr of pupal life and rise up to 120 hr during pupal development. Once again, in the late pupal development, the transaminases remain very active on account of the faster rate of histogenesis. During early adult life, the GOT and GPT are still active, as the early part of adult life of the insect is physiologically quite vigorous and accordingly the energy requirements of the body at this stage are intense. Subsequently, there occurs a regular attenuation of the activities of both of the transaminases in the aging bruchid.

Key Words

Transaminases development aging Zabrotes subfasciatus 

Résumé

L’activité des glutamate-pyruvate transaminase (GPT) augment régulièrement à measure que la quatrième instar larva de Zabrotes subfasciatus développe en prépupa. Au contraire, l’activité du glutamate-oxaloacetate transaminase (GOT) augmente significativement pendant les premières 12 hr et ensuite reste a un inveau suffisament constant pendant le dévelopment du instar larva qui suive, sauf à la 36e hr du dévelopment. Pourtant au moment de la prépupation, les activités des GOT et GPT montrent une dimunition qui est ensuite suivi d’une augmentation pendant le reste due dévelopment prépupa. L’activité de GOT est assez élevé pendant le début de l’âge pupal, l’est à dire jusqu’à la 120e hr. Au contraire, l’activité GPT décroît significativement (P < 0.05) pendant les premières 24 hr de la vie pupale qui pourtant continue à augmente jusqu’à la 120e hr du développment pupale. Encore, pendant le développement pupal tardif les transaminases restent très actifs à cause ce cadence plus rapide de histogenesis. Pendant le commencement de l’âge adulte, le GOT et le GPT sont encore actifs, puis que la première partie de la vie adulte de l’insecte est assez vigoureuse et en conséquence les besoins de l’energie du corps en ce moment sont intenses. Ensuite, il se produit une atténuation régulière des activités des deux transaminases dans les bruchids vieillissants.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora G. L. (1977) Taxonomy of the bruchids (Coleóptera) of North-West India. Orient. Insects 7, 92.Google Scholar
  2. Ashmore J., Wagle S. P. and Uete T. (1964) Studies on gluconeogenesis. In Advances in Enzyme Regulation (Edited by Weber G.), Vol. 2, pp. 101–114. Pergamon Press, Oxford.CrossRefGoogle Scholar
  3. Bergner H., Muenchow H. and Wirthgen S. (1968) Correlation between protein nutrition, thyroid secretion rate, and the activities of certain enzymes. Acta biol. med. germ. 21, 683–686.PubMedGoogle Scholar
  4. Chang Y. Y. H., Frazier J. L. and Heitz J. R. (1979) Time course of enzyme development in the boll weevil, Anthonomus grandis. Comp. Biochem. Physiol. 62B, 45–50.Google Scholar
  5. Chen P. S. (1966) Amino acid and protein metabolism in insect development. In Advances in Insect Physiology, Vol. 3, pp. 53–132. Academic Press, New York.CrossRefGoogle Scholar
  6. Cohen P. P. (1951) In The Enzyme (Edited by Summer J. B. and Myrback K.), Vol. I, Chap. 2, pp. 1040–1067. Academic Press, New York.Google Scholar
  7. Gilbert L. I. (1967) Lipid metabolism and function of insects. Adv. Insect Physiol. 4, 69–211.CrossRefGoogle Scholar
  8. Kaur S. P. (1984) Studies on the biochemical changes related to the metamorphosis and adult life of Zabrotes subfasciatus (Boh.) (Coleóptera: Bruchidae). Ph.D. thesis, Punjabi University, Patiala.Google Scholar
  9. Knox W. E. and Greengard O. (1965) The regulation of some enzymes of nitrogen metabolism—an introduction to enzyme physiology. In Advances in Enzyme Regulation (Edited by Weber G.), Vol. 3, pp. 247–313. Pergamon Press, Oxford.CrossRefGoogle Scholar
  10. Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J. (1951) Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275.PubMedPubMedCentralGoogle Scholar
  11. Mordue W. and Goldsworthy G. J. (1973) Transaminase levels and uric acid production in adult locusts. Insect Biochem. 3, 419–427.CrossRefGoogle Scholar
  12. Nimni M. E., Horn D. and Barette L. A. (1962) Dietary composition and tissue protein synthesis. II. Tryptophan toxicity and amino acid deficiency in collagen synthesis. J. Nutr. 78, 133–138.CrossRefGoogle Scholar
  13. Nohel P. and Slama K. (1972) Effect of juvenile hormone analogue on glutamate-pyruvate transaminase activity in the bug, Pyrrhocoris aplerus. Insect Biochem. 2, 58–66.CrossRefGoogle Scholar
  14. Pant R. and Morris I. D. (1972) A comparative study on the variation of aminotransferase activity and its total free amino acids in the fat body, haemolymph and intestine and haemolymph protein content in Philosamia ricini during larval-pupal development. Indian J. Biochem. Biophys. 9, 199–202.PubMedGoogle Scholar
  15. Pant R. and Kumar S. (1980) Significance of some enzymes and metabolites during aging of the dipteran fleshfly, Sarcophaga ruficornis. Curr. Sci. 49, 10–13.Google Scholar
  16. Pant R. and Pandey K. N. (1980) Variations in different biochemical parameters in the fat body of Antheraea mylitta (Tasar silkworm). Indian J. exp. Biol. 18, 537–539.PubMedGoogle Scholar
  17. Reitman S. and Frankel S. (1957) A colorimetrie method for the determination of serum glutamic oxaloacetic acid and glutamic pyruvic transaminases. Am. J. clin. Path. 28, 56–63.CrossRefGoogle Scholar
  18. Sidhu D. S. (1982) Biochemical investigations on the post-embryonic development of Chilomenes sexmaculata Fabr. (Coleóptera: Coccinellidae). Ph.D. thesis, Punjabi University, Patiala.Google Scholar
  19. Wergedal J. E., Ku Y. and Harper A. E. (1964) Influence of protein intake on the catabolism of ammonia and glycine in vivo. In Advances in Enzyme Regulation (Edited by Weber G.), Vol. 2, pp. 289–310. Pergamon Press, Oxford.CrossRefGoogle Scholar

Copyright information

© ICIPE 1985

Authors and Affiliations

  • Surinder Pal Kaur
    • 1
  • Dalbinder Singh Sidhu
    • 1
  • S. S. Dhillon
    • 1
  • Nirmal Kumar
    • 1
  1. 1.Department of ZoologyPunjabi UniversityPatialaIndia

Personalised recommendations