Advertisement

International Journal of Tropical Insect Science

, Volume 13, Issue 6, pp 775–779 | Cite as

Chemical Additives that Affect the Potency of Endotoxin of Bacillus Thuringiensis Against Plodia Interpunctella

  • A. El-Moursy
  • R. Aboul-Ela
  • H. S. Salama
  • A. Abdel-Razek
Research Article

Abstract

Biochemical approaches have been used to enhance the potency of of Bacillus thuringiensis against Plodia interpunctella. Tests were made with different classes of chemical compounds, characterized by being safe, non-toxic to man, and cheap in price. Among the tested inorganic salts, calcium carbonate, calcium oxide and zinc sulphate were found to increase the potency of B. thuringiensis δ-endotoxin by 2.5-, 1.9- and 2.7- fold, respectively. With the nitrogenous compounds, the amino acids serine, arginine, alanine and leucine enhanced the endotoxin effect by 5.2-, 3.6-, 1.3-and 1.1-fold, respectively. Also, among the protein solubilizing agents, EDTA and sodium thioglycollate led to a 100- and 2.6-fold Increase in the potency. Formic acid was highly effective among the organic acids used in enhancing the potency, followed by malic acid, with 4.8- and 2.4-fold increase, respectively.

Key Words

Additives potency Bacillus thuringiensis Plodia interpunctella 

Résumé

Une approche bio-medical a été utilisé pour améliorer la puissance de Bacillus thuringiensis contre la mitte Indienne Plodia interpunctella. Des analyses ont été faites avec des classes de composition chimique characterise par leur aspect sain. Entre les sels analyses le carbonate de calcium et l’oxide de calcium et la sulphate de zinc ont augmenté la puissance de B. thuringiensis δ-endotoxin par 2, 5, 2, 7 et 1, 9, respectivement Avec les composition (azotique) les acide amino, la serine, l’arginine, l’alanine et le leucine ont améliore l’effet par par 5, 2, 3, 6, 1, 1 et 1, 3 respectivement Aussi avec les agents de soiubilisation de proteine, EDTA et le thioglycollate de sodium ont augmenté la puissance par 100- et 2, 6 fois. L’acide fourmique a été très efficace parmi les acides organiques qui ont été utilise pour améliorer la puissance suivi par l’acid malie par 4, 8 et 2, 4 fois, respectivement

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott W. S. (1925) A method of computing effectiveness of insecticides. J. econ. Entomol. 18, 265–267.CrossRefGoogle Scholar
  2. Burges H. D. (1977) Control of wax moth Galleria mellonella on beecomb by H-serotype Bacillus thuringiensiss and the effect of chem ical additives. Apidologie 8, 155–168.CrossRefGoogle Scholar
  3. Chapman R. F. (1974) The chemical inhibition of feeding by phytophagous insects: A review. Bull. Entomol. Res. 64, 339–363.CrossRefGoogle Scholar
  4. Charless C. D. and Wallis R. (1964) Enhancement of the action of Bacillus thuringiensis var. thuringiensis on Porthetria dispar (Linn.) in laboratory tests. J. Insect Pathol. 6, 423–429.Google Scholar
  5. Chippendale G. M. (1970) Development of artificial diets for rearing the angoumois grain moth. J. econ. Entomol. 63, 844–848.CrossRefGoogle Scholar
  6. Couch T. L. and Ross D. A. (1980) Production and utilization of Bacillus thuringiensis. Biotechnol. Bioengin. 22, 1297–1304.CrossRefGoogle Scholar
  7. Dixon M. and Webb E. C. (1964) Enzymes. Academic Press Inc., New York, pp. 67–70.Google Scholar
  8. Dulmage H. T., Boening O., Rehenborg C. and Hansen G. (1971) A proposed standardized bioassay for formulations of Bacillus thuringiensis based on the international unit. J. Invertebr. Pathol. 18, 240–245.CrossRefGoogle Scholar
  9. Guerra A. A. (1970) Effect of biologically active substances in the diet on the development and reproduction of Heliothis spp. J. econ. Entomol. 63, 1518–1521.CrossRefGoogle Scholar
  10. Heimpel A. M. and Angus T. A. (1959) The site of action of crystaliferous bacteria in Lepidoptera larvae. J. Insect Pathol. 1, 152–170.Google Scholar
  11. Lecadet M. M. and Martouret D. (1965) Theenzymatic hydrolysis of Bacillus thuringiensis Berliner crystals of the liberation of toxic fractions of bacterial origin by the cycle of Pieris brassicçe. J. Invertebr. Pathol. 7, 105–108.CrossRefGoogle Scholar
  12. Nickerson K. W. (1980) Structure and function of Bacillus thuringiensis protein crystal. Biotechnol. Bioeng. 22, 1305–1333.CrossRefGoogle Scholar
  13. Salama H. S., Foda M. A. and Sharaby A. (1984) Novel biochemical avenues for enhancing Bacillus thuringiensis endotoxin potency against Spodoptera littoralis (Lep.: Noctuidae). Entomophaga 29, 171–178.CrossRefGoogle Scholar
  14. Salama H. S., Foda M. S. and Sharaby A. (1985) Potential of some chemicals to increase the effectiveness of Bacillus thuringiensis Beri. against Spodoptera littoralis (Boisd.). Z. angew. Entomol. 100, 425–433.CrossRefGoogle Scholar
  15. Salama H. S., Foda M. S. and Sharaby A. (1986) Possible extension of the activity spectrum of Bacillus thuringiensis through chemical additives. J. appi. Entomol. 101, 304–313.CrossRefGoogle Scholar
  16. Salama H. S., Foda M. S. and Sharaby A. (1989) Potentiation of B. thuringiensis endotoxin against the greasy cutworm Agrotis ypsilon. J. Appi. Entomol. 108, 372–380.CrossRefGoogle Scholar
  17. Salama H. S., El-Moursy A., Aboul-Ela R. and Abdel-Razek A. (1991, under publication) Potency of different varieties of Bacillus thuringiensis (Berliner) against some lepidopterous stored product pests.Google Scholar
  18. Smirnoff W. A. (1974) The symptoms of infection by Bacillus thuringiensis + chitinase formulation in larvae of Choristoneurafumiferana. J. Invertebr. Pathol. 23, 397–399.CrossRefGoogle Scholar
  19. Wigglesworth V. B. (1972) The Principles of Insect Physiology. London: English Language Book Society, Chapma. and Hall.CrossRefGoogle Scholar
  20. Yadava R. L. (1971) On the chemical stressors of nuclear polyhedrosis virus of gypsy moth, Lymantria dispar L. Z. angew. Entomol. 69, 303–311.CrossRefGoogle Scholar

Copyright information

© ICIPE 1992

Authors and Affiliations

  • A. El-Moursy
    • 1
  • R. Aboul-Ela
    • 1
  • H. S. Salama
    • 2
  • A. Abdel-Razek
    • 2
  1. 1.Faculty of ScienceCairo UniversityCairoEgypt
  2. 2.National Research CentreDokki, CairoEgypt

Personalised recommendations