International Journal of Tropical Insect Science

, Volume 13, Issue 6, pp 771–774 | Cite as

Free Amino Acid Concentrations in the Male Accessory Glands During Development of Adult Variegated Grasshopper, zonocerus Variegatus L. (Orthoptera: Pyrgomorphidae)

  • W. A. Muse
  • R. A. Balogun
Research Article


The free amino acids of the accessory glands of adult male variegated grasshopper, Zonocerus variegatus (Linnaeus) were investigated at five different ages after emergence of insects maintained oh cassava Manihot esculenta, Cranz using automatic amino acid analyser, Beckman 121 MB. Thirteen amino acid components were consistently detected from days 6 to 28: cystine, aspartic acid, serine, glutamic acid, proline, glycine, alanine, valine, tyrosine phenylalanine, histidine, lysine and arginine. Proline, alanine, glycine, glutamic acid and serine occurred in highest concentrations, comprising 14.27, 11.88, 11.09, 9.66 and 8.15 nmoles respectively throughout the 28-day experimental period. Total free amino acids fluctuated in the course of development of accessory gland with highest load at 28 days of age.

Key Words

Free amino acids male accessory gland development Zonocerus variegatus 


Nous avons étudié les acides aminés purs des glandes accessoires de la sauterelle bariolée adulte et mâle, Zonocerus variegatus (Linnaeus) a cinq âges différents après l’émergence d’insectes nourris de manioc, Manihot esculenta, Cranz au moyen de l’analyseur automatique d’acides aminés, le Beckman 121 MB. Nous avons relevé, du premier au vingt-huitième jour, treize composants d’acides aminés: la cystine, la serine d’acide aspartique, la valine, la tyrosine phenylalanine, r histidine, la lysine et l’arginine. Les plus fortes concentrations, entrestrées dans la proline, l’alanine, la glycine, l’acide glutamique et la serine étaient, respectivement, de 14.27, 11.88, 11.09, 9.66 et 8.15 nmoles au cours des 28 jours de l’expérience. Le total des acides aminés a varié tout au long de la période du développement des glandes accessoires, le taux le plus élève étant enregistré à 28 jours.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balogun R. A. (1974) À sex-specific ninhydrin-positive component detected in the accessory glands of adult male tsetse flies (Diptera, Glossinidae). Nigerian J.Eniomol. 1, 13–16.Google Scholar
  2. Baumann H. (1974) Biological effects of paragonial substances, PS-. and PS-2 in the females of Drosophilafunebris. J. Insect Physiol. 20, 2347–2362.CrossRefGoogle Scholar
  3. Baumann H., Wilson K. J., Chen P. S. and Humbel R. E. (1975) The amino acid sequence of a peptide (PS-1) from Drosophilafunebris. A paragonial peptide from males which reduces the receptivity of the female. EuropeanJ.Biochem. 52, 521–529.CrossRefGoogle Scholar
  4. Chen P. S. (1984) The functional morphologs and biochemistry of insect male accessory glands and their secretions. Entomol. 29, 233–255.CrossRefGoogle Scholar
  5. Chen P. S. and Buhler R. (1970) Paragonia substance and other ninhydrin-positive components in the male and female adults of Drosophila melanogaster. J. Insect Physiol. 16, 615–627.CrossRefGoogle Scholar
  6. Chen P. S. and Diem C. (1961) A sex-specific ninhydrin-positive substance found in the paragonia of adult males of Drosophila melanogaster. J. Insect Physiol. 7, 289–298.CrossRefGoogle Scholar
  7. Chen P. S. and Oechslin A. (1976) Accumulation of glutamic-acid in the paragonial gland of Drosophila nigromelanica. J. Insect Physiol. 22, 1237–1243.CrossRefGoogle Scholar
  8. Fox A.S.(1956) Chromatographic difference between male and female Drosophila melanogaster and role of X and Y chromosomes. Physiol. Zool. 19, 288–298.CrossRefGoogle Scholar
  9. Frank E. and Happ G. M. (1976) Spermatophore of the mealworm beetle. Immunochemical characteristics suggest affinities with accessory gland. J. Insect Physiol. 22, 891–895.CrossRefGoogle Scholar
  10. Gillot C. and Friedel T. (1977) Fecundity-enhancing and receptivity-inhibiting substances produced by male insects: A review. Adv. Invertebr. Rep. 1, 199–217.Google Scholar
  11. Happ G. M. (1987) Accessory gland development in mealworm beetles. Molecular Entomology, pp. 433–442. Allan R. Liss, Incorporation, New York, USA.Google Scholar
  12. Leopold R. A. (1976) The role of male accessory glands in insect reproduction. Annu. Rev. Entomol. 21, 199–222.CrossRefGoogle Scholar
  13. Levenbook L. and Dinamarca M. L. (1966) Free amino acids and related compounds during metamorphosis of the blowfly, Phormia regina. J. Insect Physiol. 12, 1343–1362.CrossRefGoogle Scholar
  14. Novak A. F., Blum M. D., Taber S., Agric. Research Service and Linzzo J. A. (1960) Separation and determination of seminal plasma and sperm amino acids of the honey bee, Apis mellifera. Ann. Entomol. Soc. Am. 53, 841–843.CrossRefGoogle Scholar

Copyright information

© ICIPE 1992

Authors and Affiliations

  • W. A. Muse
    • 1
  • R. A. Balogun
    • 1
  1. 1.Department of ZoologyObafemi Awolowo UniversityIle-IfeNigeria

Personalised recommendations