Advertisement

Agriculture and Vector Resistance

  • Jean Mouchet
Mini Review

Abstract

Agricultural treatments mainly against cotton and rice pests put a considerable insecticide pressure on larvae and sometimes adults of several vector species. Resistances to compounds which had never been used for public health, but were currently employed in agriculture were observed among vectors. It was also noticed that resistance level in some vector species was linked to the quantity of the compound used in the same area against crop pests.

Resistance in Anopheles gambiae in Africa, in An. albimanus in Central America, in An. culicifacies and An. aconitus in South East Asia, in An. sacharovi in Turkey, in Culex tritaeniorhynchus in the Far East as well as the DDT resistance in Simulium damnosum in West Africa, seem to be associated with the agricultural practices.

On the other hand, resistance did not develop in species which, due to their ecology, were not in contact with agricultural insecticide even in areas where DDT was applied for more than 20 years in house spraying. This is the case of An. dirus and An. minimus in Thaïland and An. darlingi South America.

However several important factors like Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, have developed resistance for which agricultural treatments cannot be held responsible. It would be worth saying that the rise in malaria in certain countries, such as India, is only due to the increase of insecticide in agriculture after the “green revolution”.

Key Words

Agriculture insecticide resistance Anopheles Culex Aedes malaria Japanese encephalitis 

Mots Cléfs

Agriculture insecticide résistance Anopheles Culex Aedes Paludisme-Encéphalite japanaise 

Résumé

Les traitements agricoles destinés, en particulier, au coton et au riz ont provoqué une pression insecticide considérable sur les larves et quelquefois les adultes de plusieurs espèces de vecteurs. On a observé chez ces derniers le développement de résistances à des produits qui n’avaient jamais été utilisés en santé publique mais étaient d’emploi courant en agriculture. On a également noté que les niveaux de résistance des vecteurs à certains produits étaient étroitement correlés à l’utilisation de ces composés en agriculture dans la même région.

On a ainsi constaté que les résistances d’Anopheles gambiae en Afrique, d’An. albimanus en Amérique Centrale, d’An. culicifacies et d’An. aconitus en Asie, d’An. sacharovi en Turquie, de Culex tritaeniorhynchus en Extrême Orient étaient liées aux pratiques agricoles de même que la résistance au DDT de Simulium damnosum en Afrique de l’Ouest.

Inversement l’utilisation du DDT en traitement intradomiciliaire pendant plus de 20 ans n’a pas entrainé de résistance chez des espèces, comme An. minimus et An. dirus en Thaïlande et An. darlingi en Amérique du Sud, que leur écologie tient à l’écart des traitements agricoles.

Il existe cependant des vecteurs importants comme An. stephensi, Culex quinquefasciatus et Ae. aegypti qui ont développé des résistances dont les traitements agricoles ne peuvent être tenus pour responsables. Ces traitements ne sauraient d’ailleurs supporter la responsabilité totale de la reprise du paludisme dans certains pays comme l’Inde.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous (1980) Resistance des vecteurs de maladies aux pesticides. Sér. Rapp. Techn., No. 655, OMS, Genève.Google Scholar
  2. Anonymous (1982) Integrated vector control. Ser. Rapp. Techn., No. 688, OMS, Genève.Google Scholar
  3. Ayad H. and Georghiou G. P. (1975) Resistance to or-ganophosphates and carbamates in Anopheles albimanus based on reduced sensitivity of acetylcholinesterase. J. econ. Ent. 68, 295–297.CrossRefGoogle Scholar
  4. Bang Y. H. (1970) Pesticides spray practices in rice fields and control of culicine mosquitos, Report to WHO/VBC.Google Scholar
  5. Breeland S. G., Kliewer J. W., Austin J. R. and Miller C. W. (1970) Observation on malathion resistance of adult Anopheles albimanus in Coastal El Salvador. Bull. Org. mond. Santé, 43, 627–631.Google Scholar
  6. Brown A. W. A. and Pal R. (1973) Resistance des arthropodes aux insecticides. Ser. Monog. OMS, No. 38, OMS, Genève.Google Scholar
  7. Bruce-Chwatt L. J. (1981) Malaria debated. Nature (Lond.) 294, 302–303.CrossRefGoogle Scholar
  8. Brun L. O. and Sales S. (1975) Evolution de la resistance à la dieldrine d’une population sauvage d’Anopheles fun-estus Giles en l’absence de traitements selectifs délibérés. Rap. ronéot. OCCGE-ORSTOM, Lab. Entomologie, Bobo-Dioulasso, No. 15/Ent/75 du 25.11.1975.Google Scholar
  9. Chapin G. and Wasserstrom R. (1981) Agricultural production and malaria resurgence in Central America and India. Nature (Lond.) 293, 181–185.CrossRefGoogle Scholar
  10. Chapin G. and Wasserstrom R. (1983) Final words on malaria return. Nature (Lond.) 302, 372.CrossRefGoogle Scholar
  11. Curtis C. F. (1981) Malaria debated. Nature (Lond.) 294, 388.CrossRefGoogle Scholar
  12. Davidson G. (1982a) The agricultural usage of insecticide in Turkey and the resurgence of malaria. Proceed. Int. Work. Resistance to Insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council, Sri Lanka, 122–129.Google Scholar
  13. Davidson G. (1982b) Likely contacts between insecticides and arthropods of medical importance. Proceed. Int. Work. Resistance to Insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council, Sri Lanka, 137–146.Google Scholar
  14. Georghiou G. P. (1972) Studies on resistance to carbamate and organophosphorus insecticides in Anopheles albimanus. Am. J. trop. Med. and Hyg. 21, 797–806.CrossRefGoogle Scholar
  15. Georghiou G. P. (1982a) The surveillance of pest resistance to insecticides in agriculture. Proceed. Int. Work. Resistance to Insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council, Sri Lanka, 46–62.Google Scholar
  16. Georghiou G. P. (1982b) The implication of agricultural insecticides in the development of resistance by mosquitos with emphasis on Central America. Proceed. Int. Work. Resistance to insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council, Sri Lanka, 95–121.Google Scholar
  17. Georghiou G. P., Ariaratnam V. and Breeland S. G. (1971) Development of resistance to carbamates and organophosphorus compounds in Anopheles albimanus in nature. Bull. Org. mond. Santé 46, 551–554.Google Scholar
  18. Georghiou G. P., Breeland S. G. and Ariaratnam V. (1973) Seasonal escalation of organophosphorus and carbamate resistance in Anopheles albimanus by agricultural sprays. Environ. Ent. 2, 369–374.CrossRefGoogle Scholar
  19. Grant C. D. and Brown A. W. A. (1967) Development of DDT resistance in certain mayflies in New Brunswick. Can. Ent. 99, 1040–1050.CrossRefGoogle Scholar
  20. Guillet P., Mouchet J. and Grébaut S. (1977) La resistance au DDT chez Simulium damnosum s.l. en Afrique de l’Quest, WHO/VBC/77.678.Google Scholar
  21. Hamon J. and Garrett-Jones C. (1963) La resistance aux insecticides chez les vecteurs majeurs de paludisme et son importance opérationnelle. Bull. Org. mond. Santé 28, 1–24.Google Scholar
  22. Hamon J., Sales S. and Coz J. (1968a) Données récentes sur la resistance aux insecticides chez les membres du complexe Anopheles gambiae et chez. An. funestus. Rap. final, VIII° Conf. Techn. OCCGE, avril 1968 Bamako.Google Scholar
  23. Hamon J., Sales S., Venard P., Coz J. and Brengues J. (1968b) Présence dans le Sud Ouest de la Haute Volta de populations d’An. funestus Giles resistantes à la dieldrine. Méd. trop. (Marseille) 28, 222–226.Google Scholar
  24. Hamon J., Sales S. and Coz J. (1968c) Présence dans le Sud Ouest de la Haute-Volta d’une population d’An. gambiae resistante au DDT. Méd. trop (Marseille) 28, 521–529.Google Scholar
  25. Hamon J. and Ouedraogo C. S. (1969) La résistance aux insecticides des vecteurs des paludismes humains dans la zone de l’Office du Niger, Mali, et dans la region de Somousso, Haute-Volta. Rap. final de la IXè Conf. Techn. OCCGE, avril 1969, Bobo-Dioulasso.Google Scholar
  26. Herath P. R. J. (1982) Pesticide resistance and malaria control in Sri Lanka. Proceed. Int. Work. Resistance to Insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council Sri Lanka, 171–189.Google Scholar
  27. Hobbs J. H. (1973) Effect of agricultural spraying on Anopheles albimanus densities in a coastal area of El Salvador. Mosquito News 33, 420–423.Google Scholar
  28. Ismail I. A. H. (1982) Resistance induction in vectors in relation to agricultural use of pesticides in South East Asia. Proceed. Int. Work. Resistance to Insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council, Sri Lanka, 130–136.Google Scholar
  29. Ismail I. A. H. and Phinichpongse (1980) Monitoring susceptibility of malaria vectors and suspected vectors to pesticides in Thailand. WHO/VBC/80.775.Google Scholar
  30. Mouchet J., Elliot R., Gariou J., Voelckel J. and Varrieras A. (1960) La résistance aux insecticides de Culex fatigans et les problèmes d’hygiène urbaine au Cameroun. Méd. trop. (Marseille) 20, 447–456.Google Scholar
  31. Mouchet J. and Laigret J. (1967) La résistance aux insecticides chez les Aedes aegypti à Tahiti. Méd. trop. (Marseille) 27, 685–692.Google Scholar
  32. Muir D. A. (1982) Selection dynamics of populations— pressure due to agricultural pest and vector control. Proceed. Int. Work. Resistance to insecticides used in Public Health and Agriculture, 22–26 Feb. 1982, Nat. Sci. Council, Sri Lanka 211–223.Google Scholar
  33. Philippon B. and Mouchet J. (1976) Répercussions des aménagements hydrauliques à usage agricole sur l’épidémiologie des maladies à vecteurs en Afrique intertropicale. Cahiers du CENECA, Col. intern. Paris, 3–4 mars 1976, Doc. 3.2-13.Google Scholar
  34. Ramsdale C. D. (1975) Insecticide resistance in the Anopheles in Turkey. Trans. Roy. Soc. trop. Med. Hyg. 69, 226–235.CrossRefGoogle Scholar
  35. Sharma V. P. and Mehrotra K. N. (1982a) Return of malaria. Nature (Lond.) 298, 210.CrossRefGoogle Scholar
  36. Sharma V. P. and Mehrotra K. N. (1982b) Malaria resurgence. Nature (Lond.) 300, 212.CrossRefGoogle Scholar
  37. Sharma V. P. and Mehrotra K. N. (1983) Final words on malaria return. Nature (Lond.) 302, 372.CrossRefGoogle Scholar
  38. Sharma V. P. and Uprety H. C. (1982) Preliminary studies on irrigation malaria. Ind. J. Malariol. 19, 139–142.Google Scholar
  39. Wasserstrom R. and Chapin G. (1981) A reply. Nature (Lond.) 244, 388.CrossRefGoogle Scholar
  40. Wattal B. L., Joshi G. G. and Das M. (1981) Role of agricultural insecticides in precipitating vector resistance. J. Comm. Dis. 13, 71–75.Google Scholar

Copyright information

© ICIPE 1988

Authors and Affiliations

  • Jean Mouchet
    • 1
  1. 1.Inspecteur général de recherches honoraire de l’ORSTOMParisFrance

Personalised recommendations