Pollination Biology of Theobroma and Herrania (Sterculiaceae)

II. Analyses of Floral Oils
  • Barbara J. Erickson
  • Allen M. Young
  • Melanie A. Strand
  • Eric H. EricksonJr.
Research Article


Floral fragrance oils related to pollination were studied in three species of Theobroma and one Herrania species (Sterculiaceae) in Costa Rica. This study was prompted by field observations that floral odours and floral visitors are markedly different between Theobroma and Herrania, as well as between species of Theobroma.

Floral fragrance in cultivated T. cacao consisted of 78 components, primarily saturated and unsaturated hydrocarbons, with 1-pentadecene the major constituent followed by n-pentadecane. The distribution of 1-pentadecene was similar at 0900 hr (43.6%), 1130 hr (52.5%) and 2000 hr (51.1%) sampling times but only 1.2% at 1600 hr. The ratio of 1-pentadecene to n-pentadecane in the 1600 hr sample, approximately 1:6, contrasted with a 3:1 ratio at 0900 and 1130 and a 6:1 ratio at 2000 hr. The greatest concentration of volatiles was found in the 1130 hr sample, with 0900 and 2000 hr concentrations being essentially equal and intermediate between the high (1130 hr) and the low (1600 hr).

Of the 58 compounds detected in T. mammosum steam distillate at 0815 hr, an array of linalool oxides accounted for 12.5% of the oil followed by isoeugenol (8.9%). Saturated hydrocarbons were also present but, unlike T. cacao, n-tricosane was the major hydrocarbon (12.2%). The major constituents of T. mammosum oil clearly distinguish this species from T. cacao.

A markedly different profile of major floral volatiles was found in T. simiarum: major constituents included the monoterpenoids citral, geraniol, nerol, and citronellol. Unlike the oily, hydrocarbon fragrance of T cacao and T mammosum, T. simiarum floral fragrance is citrus-like both in the field and laboratory. Our fragrance studies suggest considerable evolutionary divergence within Theobroma.

The floral fragrance of H. cuatrecasana contained volatiles characteristic of dipteran-pollinated plant species. Unusual volatiles found in Herrania fragrance included iridomyrmecin, guaiol, and other azulenic derivatives. No such monoterpenoids and bicyclic sesquiterpenoids (with the exception of longifolene, 0.1%, in T. simiarum) were found in Theobroma. The profiles of floral fragrance chemotaxonomically support the exclusion of Herrania spp. from the genus Theobroma.

Key Words

cacao pollination Costa Rica 


Les essences florales parfumées liées à la pollinisation ont été etudiees dans trois espèces de Theobroma et une espèce d’Herrania (Sterculiaceae) au Costa-Rica. Cette étude est née d’observations sur le terrain qui ont montré que les odeurs et visiteurs floraux sont nettement différents entre Theobroma et Herrania, de même que parmi les différentes espèces de Theobroma.

L’essence florale dans le T. cacao cultivé se compose de 78 éléments principalement des hydrocarbures saturés et non-satures avec 1-pentadecene comme principal contituant suivi de n.pentadecane. La distribution de 1-pentadecene était similaire aux heures de relevés suivantes: à 09.00 hr (43,6%), a 11.30 hr (52,5%), à 20,00 hr (51,1%) mais seulement de 1,2% à 16.00 hr. La proportion de 1-pentadecene par rapport à n -pentadecane dans la prélèvement de 16.00 hr, approximativement de 1:6, contrastait avec une proportion de 3:1 a 09.00 hr et 11.30 hr et celle de 6:1 à 20.00 hr. Le plus grand taux de concentration d’éléments volatiles a été trouvé dans le prélèvement de 11.30hr, les taux de concentration de 09.00 hr et de 20.00 hr étant essentiellement égaux et intermédiaires entre le taux le plus élevé (11.00 hr) et le plus faible (16.00 hr).

Des 58 composés détectés dans T. mammosum à 08.15h un assortiment d’oxydes linaloés représentait 12,5% de l’essence suivi d’isoeugenol (8,9%). Des hydrocarbones satures étaient aussi présents mais, à la difference de T. cacao, n-tricosane était le principal hydrocarbone (12,2%). Les principaux éléments constitutifs de l’essence de T. mammosum distinguait clairement cette espèce de T. cacao.

Un profil nettement différent des principaux éléments volatiles floraux a été trouvé dans T. simiarum: les principaux éléments constitutifs comprenaient monoterpinoides, citrol, géraniol, nérol et cintronellol. A la différence de l’essence huileuse, hydrocarbonée de T. cacao et T. mammosum, l’essence florale de H. cuatrecasana contenait des éléments volatils caractéristiques des espèces de plantes à pollinisation par diptères. Des éléments volatils inhabituels trouvés dans l’essence de Herrania comprenaient iridomyrmecin, guaiol et autres dérivés hydrocarbonés. Ni monoterpinoides, ni sesquiterpinoides bicycliques (à l’exception de longifolene, 0,1% dan T. simiarum) n’ont été trouvés dans Theobroma. Les profils de l’essence floral confirment chimiotacinomiquement l’exclusion des espèces Herrania du genre Theobroma.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addison G. O. and Tavares R. M. (1951) Observacoes sobre as especies do general Theobroma que ocorrem na Amazonia. Bolet. Tech. Inst. Agron. do Norte Belem No. 25, 3–20.Google Scholar
  2. Agren L. and Borg-Karlson A. K. (1984) Responses of Argogorytes (Hymenoptera: Sphecidae) males do odor signals from Ophyrs insectifera (Orchidaceae). Preliminary EAG and Chemical investigation. Nov. Acta Reg. Soc. Scient. Upsaliensis, Ser. V.: C, 3, 111–117.Google Scholar
  3. Bergstrom G. (1978) Role of volatile chemicals in Ophrys-pollinator interactions. In Biochemical Aspects of Plant and Animal Coevolution (Edited by Harborne J. B.). Academic Press, New York and London.Google Scholar
  4. Brizicky G. K. (1966) The genera of Sterculiaceae in the southeastern United States. J. Arnold Arb. 47, 60–74.Google Scholar
  5. Buttery R. G. and Kamm J. A. (1980) Volatile components of alfalfa: possible insect host plant attractants. J. Agric. Food Chem. 28, 978–981.CrossRefGoogle Scholar
  6. Buttery R. G., Kamm J. A. and Ling L. C. (1982) Volatile components of alfalfa flowers and pods. J. Agric. Food Chem. 30, 739–742.CrossRefGoogle Scholar
  7. Buttery R. G., Kamm J. A. and Ling L. C. (1984) Volatile components of red clover leaves, flowers and seed pods: possible insect attractants. J. Agric. Food Chem. 32, 254–256.CrossRefGoogle Scholar
  8. Buttery R. G. and Ling L. C. (1984) Corn leaf volatiles: identification using Tenax trapping for possible insect attractants. J. Agric. Food Chem. 32, 1104–1106.CrossRefGoogle Scholar
  9. Buttery R. G., Parker F. D., Teranishi R., Mon T. R. and Ling L. C. (1981) Volatile components of alfalfa leaf-cutter bee cells. J. Agric. Food Chem. 29, 955–958.CrossRefGoogle Scholar
  10. Buttery R. G., Seifert R. M., Ling L. C., Soderstrom E. L., Ogawa J. M. and Turnbaush J. G. (1982) Additional aroma components of honeydew melon. J. Agric. Food Chem. 30, 1208–1211.CrossRefGoogle Scholar
  11. Cristobal C. L. (1960) Revision del genero Ayenia (Sterculiaceae). Opera Lilloana 4, 1–230.Google Scholar
  12. Cristobal C. L. (1976) Estudio taxonomico d 1 genero Byttneria Loefling (Sterculiaceae). Bonplandia 4, 1–428.Google Scholar
  13. Cuatrecasas J. (1964) Cacao and its allies—a taxonomic revision of the genus Theobroma. Contrib. U.S. Nat. Mus. 35, 379–614.Google Scholar
  14. Davidek J., Pudel F., Vesilek J. and Kubelka V. (1982) Volatile constituents of Elder (Sambacus nigra L.) II. Berries, Lebensm. Wiss. u. Technol. 15, 181–182.Google Scholar
  15. Enriquez G. A. (1977) The nature of self-incompatibility. Turrialba, Costa Rica, C.A.T.I.E., pp. 127 (mimeo).Google Scholar
  16. Finnamore H. F. (1926) The Essential oils. E. Benn Ltd., London.Google Scholar
  17. Flath R. A., Mon T. R., Lorenz G., Whitten C. J. and Mackley J. W. (1983) Volatile components of Acacia sp. blossoms. J. Agric. and Food Chem. 31, 1167–1170.CrossRefGoogle Scholar
  18. Francke W., Schroder W., Bergstrom G. and Tengo J. (1984) Esters in the volatile secretion of bees. Reprt. Ecol. Sta. Uppsala Univ. 1983, 128–136.Google Scholar
  19. Freytag G. F. (1951) A revision of the genus Guazuma. Ceiba 1, 193–225.Google Scholar
  20. Fryxell P. A. (1957) Mode of reproduction of higher plants. Bot. Rev. 23, 135–233.CrossRefGoogle Scholar
  21. Gentry A. (1976) A new Panamanian Sterculia with taxonomic notes on the genus. Ann. Miss. Bot. Gard. 63, 370–372.CrossRefGoogle Scholar
  22. Gibbs P. E., Semir J. and De Cruz N. D. (1977) Floral biology of Talauma ovata St. Hil. (Magnoliaceae). Ciencia e Cultura 29, 1436–1441.Google Scholar
  23. Goldberg A. (1967) The genus Melochia L. (Sterculizceae). Contribut. U.S. Nat. Mus. 34, 191–362.Google Scholar
  24. Hanny B. W., Thompson A. C. Gueldner R. C. and Hedin P. A. (1973a) An investigation of the essential oil of Hibiscus syriacus L. Agric. Food Chem. 21, 1001–1004.CrossRefGoogle Scholar
  25. Hanny B. W., Thompson A. C. Gueldner R. C. and Hedin P. A. (1973b) Constituents of cotton seedlings: an investigation of the preference of male boll weevils for the epicotyl tips. Agric. Food Chem. 21, 1004–1006.CrossRefGoogle Scholar
  26. Hernandez J. (1965) Insect pollination of cacao (Theobroma cacao L.) in Costa Rica. Cot. Dissert. Univ. of Wisconsin, Madison.Google Scholar
  27. Hills H. G., Williams N. H. and Dodson C. H. (1972) Floral fragrances and isolating mechanisms in the genus Castasetum (Orchidaceae). Biotropica 4, 61–76.CrossRefGoogle Scholar
  28. Idstein H. and Schreier P. (1985) Volatile constituents from Guava (Psidium guajava L.) fruit. J. Agric. Food Chem. 33, 138–143.CrossRefGoogle Scholar
  29. Janson C. H. (1983) Adaptation of fruit morphology to dispersal agents in a Neotropical forest. Science 219, 187–189.PubMedCrossRefGoogle Scholar
  30. Kalin-Arroyo M. T., Primack R. and Armesto J. (1982) Community studies in pollination ecology in the high temperature Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Amer. J. Bot. 69, 82–97.CrossRefGoogle Scholar
  31. Kaufmann T. (1975) An efficient, new cocoa pollinator, Lasioglossum sp. (Hymenoptera: Halictidae) in Ghana, West Africa. Turrialba 25, 90–91.Google Scholar
  32. Kolattukudy P. E., Croteau R. and Brown L. (1974) Structure and biosynthesis of cuticular lipids. Hydroxylation of palmitic acid and decarboxylation of C23, C30, and C32 acids in Vicia faba flowers. Plant Physiol. 54, 670–677.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Lindsey A. H. (1984) Reproduction biology of Apiaceae. I. Floral visitors to Thaspium and Zizia and their importance in pollination. Am. J. Bot. 71, 375–387.CrossRefGoogle Scholar
  34. Martin F. W. (1967) Distyly, self-incompatibility and evolution in Melochia. Evolution 21, 493–499.PubMedCrossRefGoogle Scholar
  35. Mesler M. R., Ackerman J. D. and Lu K. L. (1980) The effectiveness of fungus gnats as pollinators. Am. J. Bot. 67, 564–567.CrossRefGoogle Scholar
  36. Miller R. (1952) Contribucion al estudio del a catalasa en el gineceo de la flor de cacao. Cacao en Colombia 1, 89–99.Google Scholar
  37. Robyns A. (1964) Flora of Panama, family 117: Sterculiaceae. Ann. Missouri Bot. Gard. 51, 69–107.CrossRefGoogle Scholar
  38. Schneider E. L. and Nichols D. M. (1984) Floral biology of Argemone Aurantiaca (Papaveraceae). Bull. Torrey Bot. Club 111, 1–7.CrossRefGoogle Scholar
  39. Schultes R. E. (1958) A synopsis of Herrania. J. Arnold Arb. 39, 216–278.Google Scholar
  40. Simpson B. B. and Neff J.L. (1981) Floral rewards: alternatives to pollen and nectar. Ann. Missouri Bot. Gard. 68, 301–322.CrossRefGoogle Scholar
  41. Simpson B. B., Neff J. L. and Seigler D. S. (1983) Floral biology and floral rewards of Lysimachia (Primulaceae). Amer. Midl Nat. 110, 249–256.CrossRefGoogle Scholar
  42. Soetardi R. G. (1950) De Betekenis van Insecten Bij Bestuiving van Theobroma cacao L. Archiv. Koffiecult. Indonesie 17, 1–31.Google Scholar
  43. Soria S. De J. (1970) Studies on Forcipomyia spp. midges (Diptera, Ceratopogonidae) related to the pollination of Theobroma cacao L. Doct. Dissert. Univ. Wisconsin, Madison.Google Scholar
  44. Steiner K. E. (1985) The role of nectar and oil in the pollination of Drymonia serrulata (Gesneriaceae) by Epicharis bees (Anthophoridae) in Panama. Biotropica 17, 217–299.CrossRefGoogle Scholar
  45. Stejskal G. (1969) Nectary y aroma de las flores de cacao. Oriente Agropeuc. 1, 75–92.Google Scholar
  46. Stelleman P. (1978) The possible role of insect visits in pollination of reputedly anemophilous plants, exemplified by Plantago lanceolata, and syrphid flies. In: The Pollination of Flowers by Insects (Edited by Richards A. J.), Linn. Soc. Symp. 6. Academic Press, London.Google Scholar
  47. Thien L. B. (1974) Flora biology of Magnolia. Amer. J. Bot. 61, 1037–1045.CrossRefGoogle Scholar
  48. Thien L. B., Heimermann W. H. and Holman R. T. (1975) Floral odours and quantitative taxonomy of Magnolia and Liriodendron. Taxon. 24, 557–568.CrossRefGoogle Scholar
  49. Thien L. B., White D. A. and Yatsu L. Y. (1983) The reproductive biology of a relict—Illicium floridanum Ellis. Amer. J. Bot. 70, 719–727.CrossRefGoogle Scholar
  50. Van Der Pijl L. (1978) Reproductive integration and sexual disharmony in floral functions. In The Pollination of Flowers by Insects (Edited by Richards A. J.), Linn. Soc. Symp. No. 6. Academic Press, London.Google Scholar
  51. Vesilek J., Kubelka V., Pudil F., Svobodova Z. and Davidek J. (1981) Volatile constituents of Elder (Sambucus nigra L.) I. Flowers and leaves. Lebensm. Wiss. u. Technol. 14, 309–312.Google Scholar
  52. Vogel S. (1966) Scent organs of orchid flowers and their relation to insect pollination (Edited by DeGarma L. R.), Proc. Fifth World Orch. Conf., Long Beach, California.Google Scholar
  53. Vogel S. (1978) Pilzmuckenblumen als Pilzminenten. Flora Bd. 167, 329–366.CrossRefGoogle Scholar
  54. Waller G. R. (1970) Metabolism of plant terpenoids. In Progress in the Chemistry of Fats and Other Lipids (Edited by Holman R. T.), Oxford, Pergamon Press.Google Scholar
  55. Williams N. H. and Whitten W. M. (1983) Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biol. Bull. 164, 355–395.CrossRefGoogle Scholar
  56. Winder J. A. (1978) Cocoa flower Diptera: their identity, pollinating activity and breeding sites. PANS 24, 5–18.CrossRefGoogle Scholar
  57. Young A. M. (1981) The ineffectiveness of the stingless bee, Trigona jaty (Hymenoptera: Apidae: Meliponinae) as a pollinator of cocoa (Theobroma cacao L.), J. Appl. Ecol. 18, 149–155.CrossRefGoogle Scholar
  58. Young A. M. (1983) Seasonal differences in abundance and distribution of cocoapollinating midges in relation to flowers and fruit-set between sunny and shaded habitats of the La Lola Cocoa Farm in Costa Rica. J. Appl. Ecol. 20, 801–831.CrossRefGoogle Scholar
  59. Young A. M. (1984a) Mechanism of pollination by Phoridae (Diptera) in some Herrania species (Sterculiaceae) in Costa Rica. Proc. Ent. Soc. Wash. 86, 503–518.Google Scholar
  60. Young A. M. (1984b) Research on the natural pollination of cocoa in Central America: overview of current directions. Proc. 9th Int. Cocoa Res. Conf. Lome, Togo.Google Scholar
  61. Young A. M. (1985a) Studies of cecidomyiid midges (Diptera: Cecidomyiidae) as cocoa pollinators in Central America. Proc. Ent. Soc. Wash. 87, 49–79.Google Scholar
  62. Young A. M. (1985b) Pollen collecting by stingless bees on cacao flowers. Experientia 41, 760–762.CrossRefGoogle Scholar
  63. Young A. M., Schaller M. and Strand M. (1984) Floral nectaries and trichomes in relation to pollination in some species of Theobroma and Herrania (Sterculiaceae). Am. J. Bot. 71, 466–480.CrossRefGoogle Scholar
  64. Young A. M., Erickson B. J., Erickson E. H. Jr. and Strand M. A. (1986) Pollination biology of Theobroma and Herrania (Sterculiaceae). I. Floral biology. Insect Sci. Appl. 8, 151–164.Google Scholar

Copyright information

© ICIPE 1987

Authors and Affiliations

  • Barbara J. Erickson
    • 1
  • Allen M. Young
    • 2
  • Melanie A. Strand
    • 3
  • Eric H. EricksonJr.
    • 4
  1. 1.Department of EntomologyUniversity of WisconsinMadison, WisconsinUSA
  2. 2.Invertebrate Zoology SectionMilwaukee, WisconsinUSA
  3. 3.Department of ZoologyUniversity of WisconsinMilwaukee, WisconsinUSA
  4. 4.USDA, ARS, North Central States Bee Research Unit, Department of EntomologyUniversity of WisconsinMadison, WisconsinUSA

Personalised recommendations