Advertisement

Impact of Chitin Synthesis Inhibitor Diflubenzuron on the Feeding Physiology of Papilio demoleus (Lepidoptera: Papilionidae)

  • P. Somasundaram
  • S. Chockalingam
Article

Abstract

The effect of topical application and oral administration of diflubenzuron on the feeding budget in the fifth instar larva of Papilio demoleus has been studied. The LD50 and LC50 values of diflubenzuron were 13.50 and 9.00μg/larva/48 hr respectively. Topical application was found more efficacious in producing 50% mortality at a comparatively minimum dose of 9.00 μg. The growth efficiency was reduced by 44.54% in oral administration and 38.19% in topical application at the highest sublethal dose over that of control larvae. Not only the growth of the larvae of P. demoleus was inhibited, but the adults showed morphological deformities.

Résumé

Nous avons étudié l’effet de l’application topique et de l’administration orale de diflubenzuron sur le budget de nourriture chez les larves de Papilio demoleus dans le cinquiéme stade centre mues. Les valeurs LD50 et LC50 de diflubenzuron étaient respectivement de 13.50 et 9.00μg/larvae/48 hr. L’application/topique s’est révélée plus efficace en produisant 50% mortalité à une dose relative ment minimale de 9.00 μg. L’efficaciate dé developpement des larves fut réduite de 44.54% pour l’administration orale at de 38.19%) pour l’application topique à la dose sousmortelle maximale par comparison avec des larves controles.

Non seulement le development des larves de P. demoleus était inhibé mais encore l’adulte emergant montrait des déformites morphologiques.

Keywords

Diflubenzuron Papilio demoleus Sublethal dose growth efficiency food utilization 

Moiscléfs

Diflubenzuron Papilio demoleus dose sousmortelle efficacité de development utilization de nourriture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brower L. P. and Glazier S. C. (1975) Localization of heart poisons in the monarch butterfly. Science 188, 19–25.CrossRefGoogle Scholar
  2. Chockalingam S., Somasundaram P. and Manoharan T. (1982) Effect of diflubenzuron and penfluron on pupae of some lepidopteran insects. J. Environ. Res. 3, 25–34.Google Scholar
  3. Chockalingam S. and Krishnan M. (1984) Effects of sublethal doses of diflubenzuron on energy budget of Ergolis merione (Lepidoptera: Nymphalidae). Entomon. 9, 121–126.Google Scholar
  4. Fagoonee I. (1983) Effect of azadirachitin and of a neem extract on food utilization by Crocidolomia linotalis. Proceedings of the Second International Neem Conference, Rauischholzhausen, pp. 211–224.Google Scholar
  5. Grosscurt A. C. and Anderson S. O. (1980) Effects of diflubenzuron on some chemical and mechanical proper¬ties of the elytra of Leptinotarsa decemlineata. Ento¬mology Proceedings 83, pp. 143–150Google Scholar
  6. Ishaaya I., Ascher K. R. S. and Yablonski S. (1981) The effect of Bay SIR 8514, diflubenzuron and Hercules 24108 on growth and development of Tribolium confusum. Phytoparasitica 9, 207–209.CrossRefGoogle Scholar
  7. Krieger R. I., Feeny P. P. and Gilkinson C. F. (1971) Detoxification enzyme in the guts of caterpillars; an evolutionary answer to plant defenses. Science 172, 579–581.CrossRefGoogle Scholar
  8. Kraurer K. J. and McGregor H. E. (1980) Susceptibility of stored product insects to chitin inhibitors LY 131215 and LY 127063. J. Kansas Ent. 53, 627–630.Google Scholar
  9. Krishnan M. (1984) Studies on the bioenergetics of a chosen insect pest Pericallia ricini (Fabricius) Ph.D. thesis, Madurai Kamaraj University, Madurai.Google Scholar
  10. Mulder R. and Gijswijt M. J. (1973) The laboratory evaluation of two promising new insecticides which interfere with cuticle deposition. Pestic. Sci. 4, 737–745.CrossRefGoogle Scholar
  11. Mattson W. J. (1980) Herbivory in relation to plant nitrogen content. Ann. Rev. Ecol. Syst. 11, 119–161.CrossRefGoogle Scholar
  12. Petrusewicz K. and MacFadyen A. (1970) Productivity of terrestrial animals. IBP Handbook No. 13. Blackwell Scientific Publications, Oxford, pp. 190.Google Scholar
  13. Post L. C. and Vincent W. R. (1973) A new insecticide inhibits chitin synthesis. Naturwissemschaften 60, 883–886.Google Scholar
  14. Price P. W. (1975) Insect Ecology, Wiley Interscience Publication, New York, pp. 225.Google Scholar
  15. Ramdev Y. P. and Rao P. J. (1980) Effect of sublethal dose of insecticides on consumption and utilization of dry matter and dietary constituents of castor, Ricinus commu¬nis Linn, by the castor semilooper Achaea Janata. Indian J. Ent. 42, 567–575.Google Scholar
  16. Reed T. and Bass M. H. (1980) Larval and post larval effects of diflubenzuron on the soybean looper. J. Econ. Ent. 73, 332–338.CrossRefGoogle Scholar
  17. Sundaramurthy V. T. (1977) Effect of an inhibitor of chitin deposition on the growth and differentiation of tobacco caterpillar Spodoptera litura Fb. (Noctuidae: Lepidop-tera). Z. pflkrankh. Pflschutz. 84, 597–601.Google Scholar
  18. Saxena S. C. and Kumar V. (1981a) Effect of diflubenzuron and penfluron on integumentary chitin, protein and lipid of Chrotogonus trachypterus (Orthoptera: Acrididae). Indian J. Exp. Biol. 19, 669–670.Google Scholar
  19. Saxena S. C. and Kumar V. (1981b) Blockage in chitin biosynthesis chain in the grasshopper Chrotogonus trac¬hypterus treated with diflubenzuron and penfluron. Indian J. Exp. Biol. 19, 1199–1200.Google Scholar
  20. Waldbauer G. P. (1968) The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229–288.CrossRefGoogle Scholar

Copyright information

© ICIPE 1988

Authors and Affiliations

  • P. Somasundaram
    • 1
  • S. Chockalingam
    • 1
  1. 1.Zoological Research LaboratoryThiagarajar CollegeMaduraiIndia

Personalised recommendations