An Electron Microscopic Study of the Aortic Wall and Corpus Cardiacum in Relation to Their Neurohaemal Function in the Tsetse, Glossina Morsitans Morsitans Westwood

  • Leah R. S. Awiti
  • Thomas R. Odhiambo
  • Nelson T. Ogoma
Research Article


The anterior aorta is rich in axons and axonal endings originating from the nervus corporis cardiacum (NCC) and the corpus cardiacum (CC). Neurosecretory granules in the NCC axons are small compared to large granules synthesized in the CC. Vésiculation of the secretory granules into clusters of small vesicles occur both in NCC axonal endings and axon-like processes from the CC, suggesting that both types of secretions are released into the haemolymph.

Synapses occur between the NCC axons and cardiac muscle cells, as well as with cell processes from the CC, suggesting that some of the neurohormes from the NCC axons may function as neurotransmitters. The CC consists of large neuron-like cells, that synthesize an intrinsic secretion; it also contains a neuropil of NCC axons and CC cell processes. There is no evidence of a separate storage and release lobe in the CC. No synapses occur between the axons and cell processes or with the cell bodies. The CC cell processes have their endings in the aortic wall where they make synapses with NCC axonal endings and where they most likely release their material. It is suggested that in Glossina: (a) the aortic wall has taken over the neurohaemal role of the CC whose function otherwise remains that of synthesizing an intrinsic hormone; and that (b) the activity of the CC to synthesize and/or release its intrinsic secretion is most likely controlled in the aortic wall via a neurotransmitter substance.

Key Words

Aortic wall corpus cardiacum neurosecretion nervus corporis cardiacum neurotransmitter synapse cell process axonal ending vésiculation Glossina morsitans morsitans neurohaemal organ 


L’aorte antérieur est riche en axones et en terminaisons axionales prenant naissance dans le nervus corporis cardium (NCC) et le corpus cardiacum (CC). Les granules neurosécrétoires dans les axones du NCC sont petits comparés aux grandes granules synthétisées dans le CC. La formation des vésicules des granules sécrétoires en groupements de petites vésicules a lieu dans les terminaisons axonales du NCC et dans les excroissances ressemblant aux axones provenant du CC, suggérant que les deux types de sécrétions sont déversées dans le hémolymphe.

Il n’y a des synapses entre les axones du NCC et les cellules du muscle cardiaque, ainsi qu’avec les excroissances cellulaires provenant du CC, suggérant que certaines neurohormones provenant des axones du NCC pourraient fonctionner comme des neurotransmetteurs. Le CC consiste de grandes cellules ressemblant aux neurones qui synthétisent une sécrétion intrinsèque; il contient aussi un neuropil des axones du NCC et des excroissances de la cellule du CC. Il n’y a pas de preuve de l’existence d’une love séparée de stockage et de déversement dans le CC. Il n’ y a pas de synapses entre les axones et les excroissances ou avec les corps cellulaires. Les excroissances de la cellule ont leurs terminaisons dans la paroi aortique où elles forment des relais nerveux avec les terminaisons axonales du NCC et où elles déversent vraissemblablement leurs sécrétions.

Il est suggéré que dans le tsétsé Glossina, (a) la paroi aortique a assumé le rôle neurohématique du CC dont la fonction reste autrement cell du synthétiser une hormone intrinsèque; et que (b) l’activité du CC de synthétiser et/ou de déverser sa sécrétion intrinsèque est très vraissemblablement contrôlée dans la paroi aortique via une substance neurotransmittrice.

Mots Clefs

Paroi aortique corpus cardiacum neurosécrétion nervus corporis cardiacum neurotransmitteur synapses excroissance cellulaire terminaison axonale formation de vésicules Glossina morsitans organe neurohématique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bowers B. and Johnson B. (1966) An electron microscope study of the corpora cardiaca and secretory neurons in the aphid, Myzus persicae (Sulz.). Gen. comp. Endocr. 6, 213–230.Google Scholar
  2. Cassier P. and Fain-Maurel M. A. (1970a) Contribution à l’étude infrastructurale du Systeme neurosecreteur retrocerebral chez Locusta migratoria mirgratorioides (R. et F.). I. Les corpora cardiaca. Z. Zellforsch. 111, 471–482.CrossRefGoogle Scholar
  3. Cassier P. and Fain-Maurel M. A. (1970b) Contribution à l’étude infrastructurale du système neurosecreteur retrocerebral chez Locusta migratorioides (R. et F.). II. Le transit des neurosecretions. Z. Zellforsch. 111, 483-192.Google Scholar
  4. Cazal P. (1948) Les glandes endocrines retrocerebrales des insectes (Études morphologiques). Bull. Biol. Suppl. 32, 1–227.Google Scholar
  5. Cazal M., Joly L., and Porte A. (1971) Étude ultrastructurale des corpora cardiaca et de quelques formations annexes chez Locusta migratoria L. Z. Zellforsch. 114, 61–72.CrossRefGoogle Scholar
  6. De Robertis E. (1964) Histophysiology of Synapses and Neurosecretion. Pergamon Press, Oxford.Google Scholar
  7. Dogra G. S. (1967a) Studies on the neurosecretory system of Ranatra elongata Fabricius (Hemiptera: Nepidae) with reference to the distal fate of NCCI and NCC II. J. Morph. 121, 223–240.CrossRefGoogle Scholar
  8. Dogra G. S. (1967b) Studies on the neurosecretory system and the functional significance of NSM in the aortal wall of the bug, Dysdercus koenigii. J. Insect Physiol. 13, 1895–1906.CrossRefGoogle Scholar
  9. Dogra G. S. (1969) Studies in situ on the neuroendocrine system of the giant water bug, Belostoma indica (Lep. and Serv.) (Heteroptera; Belostomatidae). Acta anat. 72, 429-145.Google Scholar
  10. Douglas W. W., Nagasawa J. and Schulz R. (1971) Electron microscopic studies on the mechanism of secretion of posterior pituitary hormones and the significance of microvesicles (‘synaptic vesicles’): evidence of secretion by exocytosis and formation of microvesicles as by product in this process. In M. Soc. Endocr. No. 19. Subcellular Organization and Function in Endocrine Tissue (Edited by Heller H. and Lederis K.), pp. 353–378. Cambridge University Press.Google Scholar
  11. Ejezie G. C. and Davey K. G. (1974) Changes in the neurosecretory cells, corpus cardiacum and corpus allatum during pregnancy in Glossina austeni Newst. (Diptera, Glossinidae). Bull. ent. Res. 64, 247–256.CrossRefGoogle Scholar
  12. Ewen A. B. (1962) Histophysiology of the neurosecretory system and retrocerebral endocrine glands of the alfalfa plant bug, Adelphocoris lineolatus (Goeze) (Hemiptera: Miradae). J. Morph. 111, 255–273.CrossRefGoogle Scholar
  13. Gerschenfeld H. M., Tramezzani J. H. and De Robertis E. (1960) Ultrastructure and function in neurohypophysis of the toad. Endocrinology 66, 741–762.CrossRefGoogle Scholar
  14. Highnam K. C. (1961) Induced changes in the amount of material in the neurosecretory system of the desert locust. Nature 191, 199–200.CrossRefGoogle Scholar
  15. Johnson B. (1966a) Ultrastructure of probable sites of release of neurosecretory materials in an insect, Calliphora stygia Fabr. (Diptera). Gen. comp. Endocr. 6, 99–108.CrossRefGoogle Scholar
  16. Johnson B. (1966b) Fine structure of the lateral cardiac nerves of the cockroach Periplaneta americana (L.). J. Insect Physiol. 12, 645–653.CrossRefGoogle Scholar
  17. Junqua C. (1956) Étude morphologique et histophysiologique des organes endocrines de PHydrocyrius columbiae Spin. (Hemipteres, Belostonidues). Bull. Biol. 90, 154–162.Google Scholar
  18. Kawooya J. (1977) Anatomical, histological and experimental studies on the neuroendocrine system of the female tsetse fly, Glossina morsilans morsitans Westwood during the second pregnancy cycle. M. Sc. thesis, University of Nairobi.Google Scholar
  19. Knowles F. and Bern N. A. (1966) The function of neurosecretion in endocrine regulation. Nature 210, 271–272.CrossRefGoogle Scholar
  20. Krogh I. M. and Normann T. C. (1977) The corpus cardiacum neurosecretory cells of Schistocerca gregaria. Electron microscopy of resting and secreting cells. Acta zool., Stockh. 58, 69–78.CrossRefGoogle Scholar
  21. Langley P. A. (1965) The neuroendocrine system and stomatogastric nervous system of the adult tsetse fly Glossina morsitans. Proc. zool. Soc. Lond. 144, 415–424.CrossRefGoogle Scholar
  22. Meóla S. M. and Lea A. O. (1972) The ulstrastructure of the corpus cardiacum of Aedes sollicitons and histology of the cerebral neurosecretory system of mosquitoes. Gen. comp. Endocr. 18, 210–234.CrossRefGoogle Scholar
  23. Nayar K. K. (1956) Studies on the neurosecretory system of Iphita limbata Stall. (Hemiptera). III. The endocrine glands and the neurosecretory pathways in the adult. Z. Zellforsch. 44, 697–705.CrossRefGoogle Scholar
  24. Normann T. M. (1965) The neurosecretory system of the adult Calliphora erythrocephala I. The fine structure of the corpus cardiacum with some observations on adjacent organs. Z. Zellforsch. 67, 461–501.CrossRefGoogle Scholar
  25. Pimley R. W. and Langley P. A. (1981) Hormonal control of lipid synthesis in the fat body of the adult female tsetse fly, Glossina morsitans. J. Insect Physiol. 27, 839–847.CrossRefGoogle Scholar
  26. Rademakers L. H. P. M. and Beenakkers A. M. Th. (1977) Changes in the secretory activity of the glandular role of the corpus cardiacum of Locusta migratoria induced by flight; A quantitative electron microscope study. Cell Tissue Res. 180, 155–171.CrossRefGoogle Scholar
  27. Roubos E. W. (1974) Regulation of neurosecretory activity of the freshwater pulmonate Lymnaea stagnalis (L.). A quantitative electron microscopical study. Z. Zellforsch. 146, 177–205.CrossRefGoogle Scholar
  28. Seshan K. R. (1968) Studies on the neuroendocrine system of the plant bug Iphita limbata Stal (Hemiptera). Ph.D. thesis, University of Kerala.Google Scholar
  29. Seshan K. R. and Ittycheriah P. I. (1966) Iphita limbata Stal: Components of the neurosecretory material. Science 153, 427–428.CrossRefGoogle Scholar
  30. Srivastava R. C. (1969) Observations on the neurosecretory axons in the aortal wall of Halys dentatus F. (Heteroptera: Pentatomidae). Experimentia 25, 534–535.CrossRefGoogle Scholar
  31. Srivastava R. C. and Dogra G. S. (1969) Studies on the neurosecretory system of the bug, Scutellera nobilis Fabr. (Heteroptera: Pentatomidae), with reference to the material in the aortal wall. Anat. Anz. 125, 525–534.PubMedGoogle Scholar
  32. Unnithan G. C., Bern H. A. and Nayar K. K. (1971) Ultrastructural analysis of the neuroendocrine apparatus of Oncopeltus fasciatus (Heteorptera). Acta zool. 52, 117–143.CrossRefGoogle Scholar

Copyright information

© ICIPE 1985

Authors and Affiliations

  • Leah R. S. Awiti
    • 1
  • Thomas R. Odhiambo
    • 1
  • Nelson T. Ogoma
    • 1
  1. 1.International Centre of Insect Physiology and Ecology (ICIPE)NairobiKenya

Personalised recommendations