Advertisement

International Journal of Tropical Insect Science

, Volume 6, Issue 6, pp 649–652 | Cite as

Y-Autosome Genetic Sexing Strain of Anopheles albimanus (Diptera: Culicidae)

  • Titus K. Mukiama
Article

Abstract

Stripe (st+) is a dominant trait on chromosome 3R in region 33B on the cytological chromosome map of Anopheles albimanus. It is expressed as a white longitudinal stripe in fourth stage larvae and pupae, and marks a Y-autosome translocation stock T(Y; 3R)3. Pseudolinkage analysis of the available markers to the translocation breakpoint showed complete absence of recombinant progeny between T(Y;3R)3 and st+. The two loci most likely either overlap or are very closely linked. This translocation strain can be genetically sexed by selection of the stripe marker.

Key Words

Anopheles albimanus stripe locus Y-autosome translocation electrophoresis genetic markers pseudolinkage recombinants genetic sexing 

Résumé

Stripe (st+) est un caractère dominant localise sur le chromosome 3R de la region 33B de la carte chromosomique de Anopheles albimanus. Ce caractère s’exprime comme une bande blanche longitudinale dans les larves et pupae du/quatrième étage et correspond a une souche T(Y;3R)3 caractérisée par une translocation Y-autosomique. Une analyse pseudoliaison entre les marqueurs disponibles et le point de rupture de la translocation a montre une absence complete de descendance recombinante entre T(Y; 3R)3et st+. Les deux loci sont probablement superposes ou lier très étroitement. Le sexe de la souche transloquée/peut être determine génétiquement par selection du marqueur stripe.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asman S. M, McDonald P. T. and Prout T. (1981) Field studies of genetic control systems for mosquitoes. A. Rev. Ent. 26, 289–318.CrossRefGoogle Scholar
  2. Ayala F. J., Powell J. R., Tracey M. L., Mourao C. A. and Peres-Salas S. (1972) Enzyme variability in the Drosophila willistoni group. IV. Genetic variation in natural populations of Drosophila willistoni group. Genetics 70, 113–139.PubMedPubMedCentralGoogle Scholar
  3. Baker R. H., Sakai R. K. and Saifuddin U. T. (1978) Genetic sexing technique for a mosquito sterile male release. Nature 274, 253–255.CrossRefGoogle Scholar
  4. Baker R. H., Sakai R. K. and Raana K. (1981) Genetic sexing for the mosquito sterile male release. J. Hered. 72, 216–218.CrossRefGoogle Scholar
  5. Curtis C. F. (1978) Genetic sex separation in Anopheles arabiensis and the production of sterile hybrids. Bull. Wld Hlth Org. 56, 453–54.Google Scholar
  6. Curtis C. F., Akiyama J. and Davidson G. (1976) A genetic sexing system in Anopheles gambiae species A. Mosquito News 36, 493–98.Google Scholar
  7. Foster G. C., Whitten M. J., Prout T. and Gill R. (1972) Chromosome rearrangements for the control of insect pests. Science 176, 875–880.CrossRefGoogle Scholar
  8. International Atomic Energy Agency (1983) Report on research coordination meeting on the development of sexing mechanisms in fruit flies through manipulation of radiation-induced lethals and other genetic means, pp. 16–17. Vienna, Austria.Google Scholar
  9. Kaiser P. E., Seawright J. A., Dame D. A. and Joslyn D. J. (1978) Development of a genetic sexing system for Anopheles albimanus U. J. econ. Ent. 71, 766–771.CrossRefGoogle Scholar
  10. Kaiser P. E., Seawright J. A. and Joslyn D. J. (1979) Cytology of a genetic sexing system in Anopheles albimanus. Can. J. Genet. Cytol. 21, 201–211.CrossRefGoogle Scholar
  11. Keppler W. J. Jr, Kitzmiller J. B. and Rabbani M. G. (1973) The salivary gland chromosomes of Anopheles albimanus. Mosquito News 33, 42–49.Google Scholar
  12. McDonald I. C. (1971) A male-producing strain of the housefly. Science 111, 489.CrossRefGoogle Scholar
  13. Narang S. and Seawright J. A. (1983a) Genetic mapping and characterisation of aldehyde oxidase of Anopheles albimanus (Diptera: Culicidae). Biochem. Genet. 21, 653–660.CrossRefGoogle Scholar
  14. Narang S. and Seawright J. A. (1983b) Genetic and physiochemical studies on β-hydroxy acid dehydrogenase in Anopheles albimanus. Biochem. Genet. 21, 885–893.CrossRefGoogle Scholar
  15. Narang S., Seawright J. A. and Joslyn D. J. (1981) Inheritance and mapping of hexokinase-1 and phosphoglucomutase in Anopheles albimanus. Mosquito News 41, 99–106.Google Scholar
  16. Narang S., Seawright J. A. and Willis N. L. (1984) Assignment of glutamate oxaloacetate transaminase to chromosome 2 and alcohol dehydrogenase to chromosome 3 of Anopheles albimanus. Can. J. Genet. Cytol. 26, 590–594.CrossRefGoogle Scholar
  17. Rabbani M. G. and Kitzmiller J. B. (1972) Chromosomal translocations in Anopheles albimanus Wiedemann. Mosquito News 32, 421–432.Google Scholar
  18. Rabbani M. G. and Seawright J. A. (1976) Use of Yautosome translocations in assigning the stripe locus to chromosome 3 in the mosquito Anopheles albimanus. Ann. ent. Soc. Am. 69, 266–268.CrossRefGoogle Scholar
  19. Robinson A. S. and Heemert C. van (1981) Genetic sexing in Drosophila melanogaster using the alcohol dehydrogenase locus and a Y-linked translocation. Theoret. appl. Genet. 59, 23–24.CrossRefGoogle Scholar
  20. Robinson A. S. and Heemert C. van (1982) Ceratitis capitata, a suitable case for genetic sexing. Genetica 58, 229–237.CrossRefGoogle Scholar
  21. Rossler Y. (1979) Automated sexing of Ceratitis capitata (Diptera: Tephritidae): the development of strains with inherited, sex-limited pupal color dimorphism. Entomophaga 24, 411–416.CrossRefGoogle Scholar
  22. Seawright J. A., Haile D. G., Rabbani M. G. and Weidhaas D. E. (1979) Computer simulation of the effectiveness of male-linked translocations for the control of Anopheles albimanus Wiedemann. Am. J. trap. Med. Hyg. 28, 155–160.CrossRefGoogle Scholar
  23. Seawright J. A., Kaiser P. E. and Narang S. (1981a) Chromosome manipulation studies of Anopheles albimanus for genetic control. In Cytogenetics and Genetics of Vectors (Edited by Pal R., Kitzmiller J. B. and Kanda T.), pp. 249–261. Elsevier Biomedical, New York.Google Scholar
  24. Seawright J. A., Kaiser P. E., Suguna S. G. and Focks D. A. (1981b) Genetic sexing strains of Anopheles albimanus Wiedemann. Mosquito News 41, 107–114.Google Scholar
  25. Seawright J. A., Benedict M. Q., Suguna S. G. and Narang S. (1982) Redeye and vermillion eye, recessive mutants on the right arm of chromosome 2 in Anopheles albimanus. Mosquito News 42, 590–593.Google Scholar
  26. Steiner W. W. M. and Joslyn D. J. (1979) Electrophoretic techniques for the genetic study of mosquitoes. Mosquito News 39, 35–54.Google Scholar
  27. Whitten M. J. (1969) Automated sexing of pupae and its usefulness in control by sterile insects. J. econ. Em. 62, 272–273.Google Scholar
  28. Whitten M. J., Foster G. C., Arnold J. T. and Konowalow C. (1975) The Australian sheep blowfly, Lucila cuprina. In Handbook of Genetics, Vol. 3, Invertebrates of Genetic Interest (Edited by King R. C), pp. 401–418.Google Scholar
  29. Willis N. L., Smittle B. J. and Seawright J. A. (1980) A genetic sexing system for Stomoxys calcitrans. Proceedings of the Florida Anti-Mosquito Association, 51st Meeting Vol. 51, pp. 52–54.Google Scholar

Copyright information

© ICIPE 1985

Authors and Affiliations

  • Titus K. Mukiama
    • 1
  1. 1.Department of BotanyUniversity of NairobiNairobiKenya

Personalised recommendations