Skip to main content
Log in

A re-assessment of Rensch’s rule in tuco-tucos (Rodentia: Ctenomyidae: Ctenomys) using a phylogenetic approach

  • Original Investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Sexual size dimorphism (SSD) is affected by a large number of factors, mating system being one of the most relevant. Almost 70 species of subterranean rodents of the genus Ctenomys are considered highly polygynic, and polygyny jointly with absence of paternal care of the young, favours high SSD. In this respect, Rensch’s rule predicts that SSD scales with body size so that when males are larger than females SSD tends to increase with body size. We studied SSD and Rensch’s rule in 28 taxa of Ctenomys using a phylogenetic approach employing the method of phylogenetic reduced major axis (pRMA) to perform reduced major axis (RMA) model II regression in the form of log 10(male mass) on log 10(female mass). The RMA regression slope (β) was statistically tested to accept or reject the null hypothesis that βpRMA= 1.0. A slope significantly >1.0 would signal concordance with Rensch’s rule. Our results showed that despite a high degree of male-biased SSD as expected from polygynic species, Rensch’s rule is not verified in this rodent group. The causes of the non-concordance with Rensch’s rule as well as its taxonomic level of application are discussed in terms of current models of SSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouheif, E., Fairbairn, D.J., 1997. A comparative analysis ofallometry for sexual size dimorphism: assessing Rensch’s rule. Am. Nat. 149, 540–562.

    Article  Google Scholar 

  • Anderson, S., 1997. Mammals of Bolivia: taxonomy and distribution. Bull. Am. Mus. Nat. Hist. 234, 1–652.

    Google Scholar 

  • Andersson, M., 1994. Sexual Selection. Princeton University Press, Princeton.

    Google Scholar 

  • Beery, A.K., Lacey, E.A., Francis, D.D., 2008. Oxytocin and vasopressin receptors distributions in a solitary and a social species of tuco-tuco (Ctenomys haigi and Ctenomys sociabilis).J. Comp. Neurol. 507, 1847–1859.

    Article  CAS  Google Scholar 

  • Begall, S., Burda, H., Schleich, C.E. (Eds.), 2007. Subterranean Rodents: News from Underground. Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  • Bidau, C.J., Martí, D.A., 2008a. Rensch’s rule in Dichroplus pratensis: a reply to Wolak. Ann. Entomol. Soc. Am. 101, 802–803.

    Google Scholar 

  • Bidau, C.J., Martí, DA, 2008b. Contrasting patterns of sexual size dimorphism in the grasshoppers Dichroplus vittatus and D pratensis (Acrididae, Melanoplinae). J. Orthop. Res. 17, 201–211.

    Article  Google Scholar 

  • Bidau, C.J., Martí, D.A., Castillo, E.R., 2013. Rensch’s rule is not verified in melanopline grasshoppers (Acrididae). J. Insect. Biodivers. 1 (12), 1–14.

    Article  Google Scholar 

  • Bidau, C.J., Medina, A.I., 2013. Sexual size dimorphism and testis size allometry in tuco-tucos (Rodentia: Ctenomyidae). Mammalia 77, 81–93.

    Article  Google Scholar 

  • Bidau, C.J., 2006. Familia Ctenomyidae. In: Bárquez, R., Díaz, M.M., Ojeda, R. (Ed.), Mamíferos de Argentina. Sistemática y Distribución Sociedad Argentina para el Estudio de los Mamiferos. Tucumán, Argentina, pp. 212–231.

    Google Scholar 

  • Bidau, C.J., 2014. Genus Ctenomys. In: Patton, J.L., Pardiñas, U.F.J., D’Elía, G. (Eds.), Mammals of South America. Rodents, vol. 2. The University of Chicago Press, Chicago, IL

  • Blanckenhorn, W.U., Meier, R., Teder, T., 2007. Rensch’s rule in insects: patterns among and within species. In: Fairbairn, D.J., Blanckenhorn, W.U., Székely, T. (Ed.), Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford University Press, Oxford, pp. 60–70.

    Chapter  Google Scholar 

  • Blanckenhorn, W.U., Stillwell, R.C., Young, K.A., Fox, C.W., Ashton, K.G., 2006. When Rensch meets Bergmann: does sexual size dimorphism change systematically with latitude? Evolution 60, 2004–2011.

    Article  PubMed  Google Scholar 

  • Blomberg, S.P., Garland, T., Ives, A.R., 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745.

    Article  PubMed  Google Scholar 

  • Bondrup-Nielsen, S., Ims, R.A., 1990. Reversed sexual size dimorphism in microtines: are females larger than males or are males smaller than females? Evol. Ecol. 4, 261–272.

    Google Scholar 

  • Carranza, J., 2009. Defining sexual selection as sex-dependent selection. Anim. Behav. 77, 749–751.

    Article  Google Scholar 

  • Carranza, J., 2010. Sexual selection and the evolution of evolutionary theories. Anim. Behav. 79, e5–e6.

    Article  Google Scholar 

  • Clarke, M.R.B., 1980. The reduced major axis of a bivariate sample. Biometrika 67, 441–446.

    Article  Google Scholar 

  • Clutton-Brock, T., 2007. Sexual selection in males and females. Science 318, 1882–1885.

    Article  CAS  PubMed  Google Scholar 

  • Clutton-Brock, T., 2009. Sexual selection in females. Anim. Behav. 77, 2–11.

    Article  Google Scholar 

  • Clutton-Brock,T., 2010. We do not need asexual selection 2.0- nor a theory of genial selection. Anim. Behav. 79, e7–e10.

    Article  Google Scholar 

  • Dale, J., Dunn, P.O., Figuerola, J., Lislevand, T., Székely, T., Wittingham, L.A., 2007.

  • Sexual selection explains Rensch’s rule of allometry for sexual size dimorphism. Proc. R. Soc. Lond. B 4, 2971–2979.

  • Darwin, C, 1859. On the Origin of Species by Means of Natural Selection. John Murray, London.

    Google Scholar 

  • Darwin, C, 1871. The Descent of Man and Selection in Relation to Sex. John Murray, London.

    Book  Google Scholar 

  • Fairbairn, D.J., 1997. Allometry for sexual size dimorphism, patterns and processes in the coevolution of body size in males and females. Ann. Rev. Ecol. Syst. 28, 659–687.

    Article  Google Scholar 

  • Fairbairn, D.J., 2007. Introduction: the enigma of sexual size dimorphism. In: Fairbairn, D.J., Blanckenhorn, W.U., Székely, T. (Ed.), Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford University Press, Oxford, pp. 1–10.

    Chapter  Google Scholar 

  • Fairbairn, D.J., 2013. Odd Couples: Extraordinary Differences between the Sexes in the Animal Kingdom. Princeton University Press, Princeton.

    Book  Google Scholar 

  • Fairbairn, D.J., Blanckenhorn, W.U., Székely, T. (Eds.), 2007. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford University Press, Oxford.

    Google Scholar 

  • Felsenstein, J., 1985. Phylogenies and the comparative method. Am. Nat. 125, 1–15.

    Article  Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.

    Book  Google Scholar 

  • Frynta, D., Baudysová, J., Hradcová, P., Faltusová, K., Kratochvíl, L., 2012. Allometry of sexual size dimorphism in domestic dog. PLoS ONE 7 (9), e46125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giménez, M.D., Mirol, P., Bidau, C.J., Searle, J.B., 2002. Molecular analysis of populations of Ctenomys (Caviomorpha, Rodentia) with high karyotypic variability. Cytogenet. Genome Res. 96, 130–136.

    Article  PubMed  Google Scholar 

  • Gordon, A.D., 2006. Scaling of size and dimorphism in Primates II. Macroevolution. Int. J. Primatol. 27, 63–105.

    Article  Google Scholar 

  • Gardner, S.L., Salazar-Bravo, J., Cook, J.A., 2014. New species of Ctenomys Blainville 1826 (Rodentia: Ctenomyidae) from the lowlands and central valleys of Bolivia. In: Special Publications. Museum of Texas Tech University, Number 62, pp. 1–34.

  • Graziani, R.N., Lacey, E.A., 2004. A molecular analysis of the mating system of the Patagonian tuco-tuco (Ctenomys haigi). In: Abstracts 84th Annual Meeting of the American Society of Mammalogists, Arcata, CA, Poster 223.

  • Hayssen, V., 2008. Patterns of body and tail length and body mass in Sciuridae. J. Mammal. 89, 852–873.

    Article  Google Scholar 

  • Isaac, J.L., 2005. Potential causes and life-history consequences of sexual size dimorphism in mammals. Mammal. Rev. 35, 101–115.

    Article  Google Scholar 

  • Kelt, D.A., Gallardo, M.H., 1994. A new species of tuco-tuco, genus Ctenomys (Rodentia, Ctenomyidae) from Patagonian Chile. J. Mammal. 75, 338–348.

    Article  Google Scholar 

  • Kokko, K., Jennions, M.D., Brooks, R., 2006. Unifying and testing models of sexual selection. Annu. Rev. Ecol. Evol. Syst. 37, 43–66.

    Article  Google Scholar 

  • Kupfer, A., 2007. Sexual size dimorphism in amphibians: and overview. In: Fairbairn, D.J., Blanckenhorn, W.U., Székely, T. (Ed.), Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford University Press, Oxford, pp. 50–59.

    Chapter  Google Scholar 

  • Lacey, E.A., Patton, J., Cameron, G.N. (Eds.), 2000. Life Underground: The Biology of Subterranean Rodents. The University of Chicago Press, Chicago.

    Google Scholar 

  • Leutenegger, W., Cheverud, J., 1982. Correlates of sexual dimorphism in Primates: ecological and size variables. Int. J. Primatol. 3, 387–402.

    Article  Google Scholar 

  • Lindenfors, P., Gittleman, J.L., Jones, K.E., 2007. Sexual size dimorphism in mammals. In: Fairbairn, D.J., Blanckenhorn, W.U., Székely, T. (Ed.), Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford University Press, Oxford, pp. 16–26.

    Chapter  Google Scholar 

  • Lovich, J.E., Gibbons, J.W., 1992. A review of techniques for quantifying sexual size dimorphism. Growth Dev. Aging 56, 269–281.

    CAS  PubMed  Google Scholar 

  • Lu, D., Zhou, C.Q., Liao, W.B., 2014. Sexual size dimorphism lacking in small mammals. Northwest. J. Zool. 10, 53–59.

    CAS  Google Scholar 

  • Luna, F., Antinuchi, CD., Busch, C, 2002. Digging energetics in the South American rodent Ctenomystalarum (Rodentia, Ctenomyidae). Can. J. Zool. 80, 2144–2149.

    Article  Google Scholar 

  • Martinez, P.A., Ferreira Amado, T.F., Bidau, C.J., 2014. A phylogenetic approach to the study of sexual size dimorphism in Felidae and an assessment of Rensch’s rule. Ecosistemas 23, 27–36.

    Article  Google Scholar 

  • Mateju, J., Kratochvil, L, 2013. Sexual size dimorphism in ground squirrels (Rodentia: Sciuridae: Marmotini) does not correlate with body size and sociality. Front. Zool. 10, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maynard-Smith,J., 1982. Evolution and the Theory of Games. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Maynard-Smith, J., 1998. Evolutionary Genetics, 2nd Edn. Oxford University Press, Oxford.

    Google Scholar 

  • McCardle, B.H., 1988. The structural relationship: regression in biology. Can. J. Zool. 66, 2329–2339.

    Article  Google Scholar 

  • McNab, B.C., 1979. The influence of body size on the energetics and distribution of fossorial and burrowing mammals. Ecology 5, 1010–1021.

    Article  Google Scholar 

  • Medina, A.I., Martí, D.A., Bidau, C.J., 2007. Subterranean rodents of the genus Ctenomys (Caviomorpha, Ctenomyidae) follow the converse to Bergmann’s rule. J. Biogeogr. 34, 1439–1454.

    Article  Google Scholar 

  • Mirol, P., Giménez, M.D., Searle, J.B., Bidau, C.J., Faulkes, C.G., 2010. Population and species boundaries in the South American subterranean rodent Ctenomys in a dynamic environment. Biol. J. Linn. Soc. 100, 368–383.

    Article  Google Scholar 

  • Moors, P.J., 1980. Sexual dimorphism in the body size of mustelids (Carnivora): the role of food habits and breeding systems. Oikos34, 147–158.

  • Nandini, R., (PhD Dissertation) 2011. Evolution of Sexual Size Dimorphism in Squirrels. Auburn University, Alabama, USA.

  • Nevo, E., 1979. Adaptive convergence and divergence of subterranean mammals. Annu. Rev. Ecol. Syst. 10, 269–308.

    Article  Google Scholar 

  • Nevo, E., 1999. Mosaic Evolution of Subterranean Mammals: Regression, Progression and Global Convergence. Oxford University Press, Oxford.

    Google Scholar 

  • Nevo, E., Beiles, A., Heth, G., Simson, S., 1986. Adaptive differentiation of body size in speciating mole rats. Oecologia 69, 327–333.

    Article  PubMed  Google Scholar 

  • Osgood, W.H., 1943. The mammals of Chile. Field Mus. Nat. Hist. Zool. Ser. 29, 191–204.

    Google Scholar 

  • Parada, A., D’elía, G., Bidau, C.J., Lessa, E., 2011. Species groups and the evolutionary diversification of tuco-tucos, genus Ctenomys (Rodentia, Ctenomyidae). J. Mammal. 92, 671–682.

    Article  Google Scholar 

  • Pearson, O.P., 1984. Taxonomy and natural history of some fossorial rodents of Patagonia, southern Argentina. J. Zool. 202, 225–237.

    Article  Google Scholar 

  • Pearson, O.P., Christie, M.I., 1985. Los tuco-tucos (género Ctenomys) de los Parques Nacionales Lanín y Nahuel Huapi, Argentina. Hist. Nat. 5, 337–343.

    Google Scholar 

  • Pine, R.H., Angle, J.P., Schamberger, M.L., 1979. Contributions to the mammalogy of Chile. Mammalia 43, 649–655.

    Google Scholar 

  • Polák, J., Frynta, D., 2010. Patterns of sexual size dimorphism in cattle breeds support Rensch’s rule. Evol. Ecol. 24, 1255–1266.

    Article  Google Scholar 

  • Ralls, K., 1976. Mammals in which females are larger than males. Q. Rev. Biol. 51, 245–276.

    Article  CAS  PubMed  Google Scholar 

  • Ralls, K., Mesnick, S.L., 2009. Sexual dimorphism. In: Perrin, W.F., Würsig, B., Thewissen, J.G.M.(Eds.), Encyclopedia of Marine Mammals. Academic Press, Burlington, pp. 1011–1105.

    Chapter  Google Scholar 

  • Reig, O.A., Busch, C, Ortells, M.O., Contreras, J.R., 1990. An overview of evolution, systematics, population, biology, cytogenetics molecular biology and speciation in Ctenomys. In: Nevo, E., Reig, O.A. (Ed.), Evolution of Subterranean Mammals at the Organismal and Molecular Levels. Alan R. Liss, New York, pp. 71–96.

    Google Scholar 

  • Reiss, M.J., 1986. Sexual dimorphism in body size: are larger species more dimorphic? J. Theor. Biol. 121, 163–172.

    Article  Google Scholar 

  • Reiss, M.J., 1989. The Allometry of Growth and Reproduction. Cambridge University Press, London.

    Book  Google Scholar 

  • Remes, V., Székely, T., 2010. Domestic chickens defy Rensch’s rule: sexual size dimorphism in chicken breeds. J. Evol. Biol. 23, 2754–2759.

    Article  CAS  PubMed  Google Scholar 

  • Rensch, B., 1950. Die Abhängigkeit der relativenSexualdifferenz von der Körpegrosse. Bonner ZoologischeBeitraege 1, 58–69.

    Google Scholar 

  • Rensch, B., 1960. Evolution Above the Species Level. Columbia University Press, New York.

    Google Scholar 

  • Revell, L.J., 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223.

    Article  Google Scholar 

  • Rocha-Barbosa, O., Bernardo, J.S.L., Loguercio, M.F.C., Freitas, T.R.O., Santos-Mallet, J.R., Bidau, C.J., 2013. Penial morphology in three species of Brazilian tuco-tucos, Ctenomys torquatus, C minutes, and Cflamarioni (Rodentia: Ctenomyidae). Braz. J. Biol. 73, 201–209.

    Article  CAS  PubMed  Google Scholar 

  • Roughgarden, J., Akcay, E., 2010. Do we need a sexual selection 2.0? Anim. Behav. 79, e1–e4.

    Article  Google Scholar 

  • Rosvall, K.A., 2011. Intrasexual competition in females: evidence for sexual selection? Behav. Ecol. 22, 1131–1140.

    Google Scholar 

  • Russell, R.J., Baker, R.H., 1955. Geographic Variation in the Pocket Gopher, Cratogeomys castanops. Univ. Kansas Pub., Coahuila, México, pp. 591–608.

  • Schulte-Hostedde, A.I., 2007. Sexual size dimorphism in rodents. In: Wolff, J.O., Sherman, P.W. (Ed.), Rodent Societies: An Ecological and Evolutionary Perspective. The Chicago University Press, Chicago, pp. 115–118.

    Google Scholar 

  • Shine, R., 1991. Intersexual dietary divergence and the evolution of sexual dimorphism in snakes. Am. Nat. 138, 103–122.

    Article  Google Scholar 

  • Shuker, D.M., 2010. Sexual selection: endless forms or tangled bank? Anim. Behav. 79, e11–e17.

    Article  Google Scholar 

  • Smith, R.J., 1999. Statistics of sexual size dimorphism. J. Hum. Evol. 36, 423–459.

    Article  CAS  PubMed  Google Scholar 

  • Smith, R.J., 2009. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthropol. 140, 476–486.

    Article  PubMed  Google Scholar 

  • Smorkatcheva, A.V., Lukhtanov, V.A., 2014. Evolutionary association between subterranean lifestyle and female sociality in rodents. Mammal. Biol. 79, 101–109.

    Article  Google Scholar 

  • Székely, T., Lislevand, T., Figuerola, J., 2007. Sexual size dimorphism in birds. In: Fairbairn, D.J., Blanckenhorn, W.U., Székely, T. (Ed.), Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford University Press, Oxford, pp. 27–37.

    Chapter  Google Scholar 

  • Tassino, B., Estevana, I., Garberoa, R.P., Altesora, P., Lacey, E.A., 2011. Space use by Rio Negro tuco-tucos (Ctenomys rionegrensis): excursions and spatial overlap. Mammal. Biol. 76, 143–147.

    Article  Google Scholar 

  • Tubaro, P.L., Bertelli, S., 2003. Female-biased sexual size dimorphism in tinamous, a comparative test fails to support Rensch’s rule. Biol. J. Linn. Soc. 80, 519–527.

    Article  Google Scholar 

  • Vleck, D., 1979. The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiol. Zool. 52, 122–138.

    Article  Google Scholar 

  • Wallace, A.R., 1889. Darwinism: An Exposition of the Theory of Natural Selection, With Some of Its Applications. Macmillan, London.

    Google Scholar 

  • Webb, T.J., Freckleton, R.P., 2007. Only half right: species with female-biased sexual size dimorphism consistently break Rensch’s rule. PLoS ONE 8, e897.

  • Weckerly, P.W., 1998. Sexual size dimorphism: influence of mass and mating system in the most dimorphic mammals. J. Mammal. 79, 35–52.

    Article  Google Scholar 

  • Wu, H., Jiang, T., Huang, X., Lin, H., Wang, H., Wang, L., Niu, H., Feng, J., 2014. A test of Rensch’s rule in Greater Horseshoe Bat (Rhinolophus ferrumequinum) with female-biased sexual size dimorphism. PLoS ONE 9 (1), e86085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zenuto, R.R., 2010. Dear enemy relationships in the subterranean rodent Ctenomys talarum: the role of familiar odours. Anim. Behav. 79, 1247–1255.

    Article  Google Scholar 

  • Zenuto, R.R., Estavillo, C, Fanjul, M.S., 2007. Familiarity and mating behavior in the subterranean rodent Ctenomys talarum (tuco-tuco). Can. J. Zool. 85, 944–955.

    Article  Google Scholar 

  • Zenuto, R.R., Lacey, E.A., Busch, C, 1999a. DNA fingerprinting reveals polygyny in the subterranean rodent Ctenomys talarum. Mol. Ecol. 8, 1529–1532.

    Article  CAS  PubMed  Google Scholar 

  • Zenuto, R.R., Malizia, E.E., Busch, C, 1999b. Sexual size dimorphism, testes size and mating system in two populations of Ctenomys talarum (Rodentia: Octodonti-dae). J. Nat. Hist. 33, 305–314.

    Article  Google Scholar 

  • Zhang, T., Nevo, E., Tang, l., Su, J., Lin, G., 2012. Plateau zokors on the Qinghai-Tibetan Plateau follow Bergmann’s rule latitudinally, but not altitudinally. Mamm. Biol. 77, 108–112.

    Article  Google Scholar 

  • Zelová, J., Šumbera, R., Okrouhlík,J., Burda, H., 2010. Cost of digging is determined by intrinsic factors rather than by substrate quality in two subterranean rodent species. Physiol. Behav. 99, 54–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Juan Bidau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, P.A., Bidau, C.J. A re-assessment of Rensch’s rule in tuco-tucos (Rodentia: Ctenomyidae: Ctenomys) using a phylogenetic approach. Mamm Biol 81, 66–72 (2016). https://doi.org/10.1016/j.mambio.2014.11.008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2014.11.008

Keywords

Navigation