Skip to main content
Log in

Mothers that produce sons and daughters are genetically different in red deer

  • Short Communication
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Sex ratio theory, and in particular Fisher principle, assumes parental control over the sex of offspring through the action of autosomal genes with Mendelian segregation. In spite of the importance of Fisher’s principle in evolutionary biology, the number of studies looking for possible loci involved in sex ratio bias is, at best, very low. Newly developed genetic tools frequently allow evolutionary biologists to manage genetic data. Here we encourage the application of association tools to databases that include genetic information for autosomal loci and offspring sex to improve our knowledge on sex ratio evolution. As an example we use microsatellite markers to scan autosomal chromosomes and look for linked genetic regions associated with offspring sex in red deer (Cervus elaphus). We found a microsatellite marker (CelJP38) mapped in chromosome 27 for which females producing sons and daughters were genetically different. To the best of our knowledge, this is the first study that shows a genetic signal that points out an association between mother genotype and offspring sex in natural populations of a mammal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Balding, D.J., 2006. A tutorial on statistical methods for population association studies. Nat. Rev. Genet. 7, 781–791.

    Article  CAS  Google Scholar 

  • Bull, J.J., 1981. Sex ratio evolution when fitness varies. Heredity 46, 9–26.

    Article  Google Scholar 

  • Bull, J.J., Charnov, E.L., 1988. How fundamental are Fisherian sex ratios? In: Harvey, P.H., Partridge, L. (Eds.), Oxford Surveys on Evolutionary Biology. Oxford University Press, Oxford, pp. 96–135.

    Google Scholar 

  • Burley, N., 1986. Sexual selection for aesthetic traits in species with biparental care. Am. Nat. 127, 415–445.

    Article  Google Scholar 

  • Carvalho, A.B., Sampaio, M.C., Varandas, F.R., Klaczko, L.B., 1998. An experimental demonstration of Fisher’s principle: evolution and sexual proportion by natural selection. Genetics 148, 719–731.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charnov, E.L., 1982. The Theory of Sex Allocation. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Charnov, E.L., Bull, J.J., 1989. Non-fisherian sex ratios with sex change and environmental determination. Nature 338, 148–150.

    Article  Google Scholar 

  • Clark, A.B., 1978. Sex ratio and local resource competition in a prosimian primate. Science 201, 163–165.

    Article  CAS  Google Scholar 

  • Clutton-Brock, T.H., Albon, S.D., Guinness, F.E., 1984. Maternal dominance, breeding success and birth sex ratios in red deer. Nature 308, 358–360.

    Article  Google Scholar 

  • Da Silva, A., Gaillard, J.M., Yoccoz, N.G., Hewison, A.J.M., Galan, M., Coulson, T., Allainé, D., Vial, L., Delorme, D., Van Laere, G., Klein, F., Luikart, G., 2009. Heterozygosity-fitness correlations revealed by neutral and candidate gene markers in roe deer from a long-term study. Evolution 63, 403–417.

    Article  Google Scholar 

  • Evanno, G., Regnault, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620.

    Article  CAS  Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

    Book  Google Scholar 

  • Flint, A.P., Albon, S.D., Jafar, S.I., 1997. Blastocyst development and conceptus sex selection in red deer Cervus elaphus: studies of a free-living population on the Isle of Rum.Gen. Comp. Endocrinol. 106, 374–383.

    Article  CAS  Google Scholar 

  • Gomendio, M., Malo, A.F., Soler, A.J., Fernández-Santos, M.R., Esteso, M.C., García, A.J., Roldán, E.R.S., Garde, J., 2006. Male fertility and sex ratio at birth in red deer. Science 314, 1445–1446.

    Article  CAS  Google Scholar 

  • Hamilton, W.D., 1964. The genetical evolution of social behaviour. J. Theor. Biol. 7, 1–52.

    Article  CAS  Google Scholar 

  • Hamilton, W.D., 1967. Extraordinary sex ratios. Science 156, 477–478.

    Article  CAS  Google Scholar 

  • Hansson, B., Westerdahl, H., Hasselquist, D., Akesson, M., Bensch, S., 2004. Does linkage disequilibrium generate heterozygosity-fitness correlations in great reed warblers? Evolution 58, 870–879.

    PubMed  Google Scholar 

  • Kuehn, R., Schroeder, W., Pirchner, F., Rottmann, O., 2003. Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conserv. Genet. 4, 157–166.

    Article  CAS  Google Scholar 

  • Lee, B-Y., Hulata, G., Kocher, T.D., 2004. Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus). Heredity 92, 543–549.

    Article  CAS  Google Scholar 

  • Miller, S.A., Dykesand, D.D., Polesky, E.F., 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215.

    Book  Google Scholar 

  • Pérez-González, J., Carranza, J., 2009. Female-biased dispersal under conditions of low male mating competition in a polygynous mammal. Mol. Ecol. 18, 4617–4630.

    Article  Google Scholar 

  • Pritchard, J.K., Stephens, M., Rosenberg, N.A., Donnelly, P., 2000a. Association mapping in structured populations. Am. J. Hum. Genet. 67, 170–181.

    Article  CAS  Google Scholar 

  • Pritchard, J.K., Stephens, M., Donnelly, P., 2000b. Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond, M., Rousset, F., 1995. Genepop(version 1.2):population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249.

    Article  Google Scholar 

  • Roff, D.D., 1996. The evolution of threshold traits in animals. Q. Rev. Biol. 71, 3.35.

    Book  Google Scholar 

  • Rutkowska, J., Badyaev, A., 2008. Meiotic drive and sex determination: molecular and cytological mechanisms of sex ratio adjustment in birds. Phil. Trans. R. Soc. B 363, 1675–1686.

    Article  Google Scholar 

  • Schwarz, M.P., 1988. Local resource enhancement and sex ratios in a primitively social bee. Nature 331, 346–348.

    Article  Google Scholar 

  • Seger, J., Stubblefield, J.W., 2002. Models of sex ratio evolution. In: Hardy, I.C.X. (Ed.), Sex ratios: Concepts and Research Methods. Cambridge University Press, Cambridge, pp. 2–25.

    Chapter  Google Scholar 

  • Shaw, R.F., Mohler, J.D., 1953. The selective advantage of the sex ratio. Am. Nat. 87, 411–426.

    Article  Google Scholar 

  • Slate, J., Van Stijn, T.C., Anderson, R.M., McEwan, K.M., Maqbool, N.J., Mathias, M.C., Bixley, M.J., Stevens, D.R., Molenaar, A.J., Beever, J.E., Galloway, S.M., Tate, M.L., 2002. A deer (subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics 160, 1587–1597.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trivers, R.T., Willard, D.E., 1973. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92.

    Article  CAS  Google Scholar 

  • Wang, W.Y.S., Barratt, B.J., Clayton, D.G., Todd, J.A., 2005. Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118.

    Article  CAS  Google Scholar 

  • Wild, G., West, A., 2009. Genomic imprinting and sex allocation. Am. Nat. 173, E1–E14.

    Book  Google Scholar 

  • Williams, G.C., 1979. The question of adaptive sex ratio in out-crossed vertebrates. Proc. R. Soc. B 205, 567–580.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Pérez-González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-González, J., Carranza, J. & Mateos, C. Mothers that produce sons and daughters are genetically different in red deer. Mamm Biol 77, 147–150 (2012). https://doi.org/10.1016/j.mambio.2011.07.006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2011.07.006

Keywords

Navigation