Skip to main content
Log in

Assessing the impact of past wapiti introductions into Scottish Highland red deer populations using a Y chromosome marker

  • Short Communication
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

As with other many game species in Europe, introductions of non-native stock to supplement Scottish red deer populations in an attempt to improve hunting trophy are well reported. These introductions included wapiti (Cervus elaphus canadensis or Cervus canadensis), a species two to three times heavier than the Scottish red deer. However, the effect of these past introductions of wapiti into Scottish red deer populations has not yet been assessed. In this study we sequenced a Y-chromosome marker (Z fy) from 104 collected in three neighbouring estates in the Scottish Highlands including one of the areas with the highest number of wapitis introduced in Scotland, and 45 red deer from an English deer park where introduction of wapiti and subsequent crosses with red deer were a common practice. Analyses revealed that all individuals presented red deer Y-chromosome sequences therefore suggesting a low impact of past introductions of wapiti in the populations under study. Sequencing and phylogenetic analyses of Z fy sequences for four additional deer species revealed that phylogenetic relationships were in agreement with previous mtDNA phylogenetic studies, and demonstrated the potential use of this marker to determine the direction of hybridization in F1 red-sika hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Asher, G.W., Archer, J.A., Scott, I.C., O’Neill, K.T., Ward, J., Littlejohn, R.P., 2005. Reproductive performance of pubertal red deer (Cervus elaphus) hinds: effects of genetic introgression of wapiti subspecies on pregnancy rates at 18 months of age. Anim. Reprod. Sci. 90, 287–306.

    Article  CAS  Google Scholar 

  • Batcheler, C.L., McLennan, M.J., 1977. Craniometric study of allometry, adaptation and hybridism of red deer (Cervus elaphus scoticus L.) and wapiti (C. e. nelsonii, Bailey) in Fiordland, New Zealand. Proc. N. Z. Ecol. Soc. 24, 57–75.

    Google Scholar 

  • Cathey, J.C., Bickham, J.W., Patton, J.C., 1998. Introgressive hybridization and non-concordant evolutionary history of maternal and paternal lineages in North American deer. Evolution 52, 1224–1229.

    Article  Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Guindon, S., Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704.

    Article  Google Scholar 

  • Ludt, C.J., Schroeder, W., Rottman, O., Kuehn, R., 2004. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol. Phylogenet. Evol. 3, 1064–1083.

    Article  Google Scholar 

  • Moore, G.H., Littlejohn, R.P., 1989. Hybridisation of farmed wapiti (Cervus elaphus manitobensis) and red deer (Cervus elaphus). N. Z. J. Zool. 16, 191–198.

    Article  Google Scholar 

  • Pérez-Espona, S., Pérez-Barbería, F.J., McLeod, J.E., Jiggins, C.D., Gordon, I.J., Pemberton, J.M., 2008. Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol. Ecol. 17, 981–996.

    Article  Google Scholar 

  • Pérez-Espona, S., Pérez-Barbería, F.J., Goodall-Copestake, W.P., Jiggins, C.D., Gordon, I.J., Pemberton, J.M., 2009a. Genetic diversity and population structure of Scottish Highland red deer (Cervus elaphus) populations: a mitochondrial survey. Heredity 102, 199–210.

    Article  Google Scholar 

  • Pérez-Espona, S., Pemberton, J.M., Putman, R., 2009b. Red and sika deer in the British Isles, current management issues and management policy. Mamm. Biol. 74, 247–262.

    Article  Google Scholar 

  • Pérez-Espona, S., Pérez-Barbería, F.J., Goodall-Copestake, W.P., Jiggins, C.D., Gordon, I.J., Pemberton, J.M., 2010. Variable extent of sex-biased dispersal in a strongly polygynous mammal. Mol. Ecol. 19, 3101–3113.

    Article  Google Scholar 

  • Pitra, C., Fickel, J., Meijaard, E., Groves, P.C., 2004. Evolution and phylogeny of old world deer. Mol. Phylogenet. Evol. 33, 880–895.

    Article  CAS  Google Scholar 

  • Posada, D., 2008. ModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256.

    Article  CAS  Google Scholar 

  • Shaw, C.N., Wilson, P.J., White, B.N., 2003. A reliable molecular method of gender determination for mammals. J. Mammal. 84, 123–128.

    Article  Google Scholar 

  • Swofford, D.L., 2002. PAUP (Phylogenetic Analysis Using Parsimony), Version 4.0b10. Sinauer Associates, Sunderland.

    Google Scholar 

  • Whitehead, G.K., 1960. The Deer Stalking Grounds of Great Britain and Ireland. Hollis and Carter, London.

    Google Scholar 

  • Whitehead, G.K., 1964. The Deer of Great Britain and Ireland. Routledge & Kegan Paul, London.

    Google Scholar 

  • Winans, W., 1913. Deer Breeding for Fine Heads. Rowland Ward, London.

    Google Scholar 

  • Zwickl, D.J., 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Dissertation. The University of Texas at Austin.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pérez-Espona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Espona, S., Pérez-Barbería, F.J. & Pemberton, J.M. Assessing the impact of past wapiti introductions into Scottish Highland red deer populations using a Y chromosome marker. Mamm Biol 76, 640–643 (2011). https://doi.org/10.1016/j.mambio.2010.10.001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2010.10.001

Keywords

Navigation