Recognition and resolution of isomeric alkyl anilines by mass spectrometry


Two MS techniques have been used to recognize and resolve a representative isomeric pair of N-alkyl and ring-alkyl substituted anilines. The first technique (1) uses MS/MS to perform ion/molecule reactions of structurally-diagnostic fragment ions (SDFI) whereas the second (2) uses traveling wave ion mobility spectrometry (TWIMS) of the pair of protonated molecules followed by on-line collision-induced dissociation (CID), that is, MS/TWIMS-CID/MS. Isomeric C7H7N+ ions of m/z 106 (1′ from 4-butylaniline and 2 from N-butylaniline) are formed as abundant fragments by 70 eV EI of the anilines, and found to function as suitable SDFI. Ions 1′ and 2 display nearly identical unimolecular dissociation chemistry, but contrasting bimolecular reactivity with ethyl vinyl ether, isoprene, acrolein, and 2-methyl-1,3-dioxolane. Ion 2 forms adducts to a large extent whereas 1′ is nearly inert towards all reactants tested. The intact protonated anilines are readily resolved and recognized by MS/TWIMS-CID/MS in a SYNAPT mass spectrometer (Waters Corporation, Manchester, UK). The protonated N-butyl aniline (the more compact isomer) displays shorter drift time and higher lability towards CID than its 4-butyl isomer. The general application of SDFI 1′ and 2 and other homologous and analogous ions and MS/TWIMS-CID/MS for absolute recognition and resolution of isomeric families of N-alkyl and ring-alkyl mono-substituted anilines and analogues is discussed.


  1. 1.(a)

    Tao, W. A.; Gozzo, F. C.; Cooks, R. G. Mass spectrometric quantitation of chiral drugs by the kinetic method. Anal. Chem. 2001, 73, 1692–1698.

    CAS  Article  Google Scholar 

  2. 1.(b)

    Wu, L.; Meurer, E. C.; Young, B.; Yang, P.; Eberlin, M. N.; Cooks, R. G. Isomeric differentiation and quantification of alpha, beta-amino acid-containing tripeptides by the kinetic method: alkali metal-bound dimeric cluster ions. Int. J. Mass Spectrom. 2004, 231, 103–111.

    CAS  Article  Google Scholar 

  3. 1.(c)

    Sorrilha, A. E. P. M.; Gozzo, F. C.; Pimpim, R. S.; Eberlin, M. N. Multiple stage pentaquadrupole mass spectrometry for generation and characterization of gas-phase ionic species: The case of the PyC2H 5 isomers. J. Am. Soc. Mass Spectrom. 1996, 7, 1126–1137.

    CAS  Article  Google Scholar 

  4. 1.(d)

    Splitter, J. S.; Turecek, F., Eds.; Applications of mass spectrometry to organic stereochemistry; VCH Publishers: New York, 1994.

    Google Scholar 

  5. 1.(e)

    Salpin, J. Y.; Tortajada, J. Structural characterization of hexoses and pentoses using lead cationization: An electrospray ionization and tandem mass spectrometric study. J. Mass Spectrom. 2002, 37, 379–388.

    CAS  Article  Google Scholar 

  6. 1.(f)

    Gross, M. L.; Lin, P. H.; Franklin, S. J. Analytical applications of ion-molecule reactions—identification of C5H10 isomers by ion-cyclotron resonance spectrometry. Anal. Chem. 1972, 44, 974–978.

    CAS  Article  Google Scholar 

  7. 1.(g)

    Kempen, E. C.; Brodbelt, J. Use of trimethyl borate as a chemical ionization reagent for the analysis of biologically active molecules. J. Mass Spectrom. 1997, 32, 846–854.

    CAS  Article  Google Scholar 

  8. 1.(h)

    Staley, R. H.; Corderman, R. R.; Foster, M. S.; Beauchamp, J. L. Nucleophilic-attack on protonated oxiranes in gas-phase—identification of C2H5O+ isomeric ions corresponding to protonated ethylene-oxide. J. Am. Chem. Soc. 1974, 96, 1260–1261.

    CAS  Article  Google Scholar 

  9. 1.(i)

    Kjeldsen, F.; Haselmann, K. F.; Sorensen, E. S.; Zubarev, R. A. Distinguishing of Ile/Leu amino acid residues in the PP3 protein by (hot) electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2003, 75, 1267–1274.

    CAS  Article  Google Scholar 

  10. 1.(j)

    Hsu, F. F.; Turk, J.; Gross, M. L. Structural distinction among inositol phosphate isomers using high-energy and low-energy collisional-activated dissociation tandem mass spectrometry with electrospray ionization. J. Mass Spectrom. 2003, 38, 447–457.

    CAS  Article  Google Scholar 

  11. 1.(k)

    Dwivedi, P.; Wu, C.; Matz, L. M.; Clowers, B. H.; Siems, W. F.; Hill, H. H. Gas-phase chiral separations by ion mobility spectrometry. Anal. Chem. 2006, 78, 8200–8206.

    CAS  Article  Google Scholar 

  12. 2.

    Carvalho, M.; Gozzo, F. C.; Mendes, M. A.; Sparrapan, R.; Kascheres, C.; Eberlin, M. N. Locating the charge site in heteroaromatic cations. Chem. Eur. J. 1998, 4, 1161–1168.

    CAS  Article  Google Scholar 

  13. 3.

    Corilo Y. E, Eberlin M. N. Recognizing α-, β-, or γ-substitution in pyridines by mass spectrometry. J. Mass Spectrom. in press.

  14. 4.

    Moraes, L. A. B.; Sabino, A. A.; Meurer, E. C.; Eberlin, M. N. Absolute configuration assignment of ortho, meta, or para-isomers by mass spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 431–436.

    CAS  Article  Google Scholar 

  15. 5.

    da Rocha, L. L.; Sparrapan, R.; Augusti, R.; Eberlin, M. N. Direct assignment of positional isomers by mass spectrometry: ortho, meta, and para-acyl and amidyl anilines and phenols and derivatives. J. Mass Spectrom. 2004, 39, 1176–1181.

    Article  Google Scholar 

  16. 6.

    Sparrapan, R.; Eberlin, M. N.; Augusti, R. Locating the charge site in isomeric pyrrolyl ions by Eberlin ion/molecule reactions. Rapid Commun. Mass Spectrom. 2005, 19, 1775–1778.

    CAS  Article  Google Scholar 

  17. 7.

    Benassi, M, Eberlin, M. N. Extended Abstract presented at the 55th ASMS Conference on Mass Spectrometry and Allied Topics. Indianapolis, IN, June 2007.

  18. 8.

    Eberlin, M. N.; Augusti, D. V.; Augusti, R. In Chemistry of Anilines; Vol I Rappoport, Z., Ed.; John Wiley and Sons: Chichester, 2007; p. 293–346.

    Google Scholar 

  19. 9.

    Budzikiewicz, H.; Djerassi, C.; Williams, D. H. Mass Spectrometry of Organic Compounds, 1st ed.; Holden-Day: San Francisco, CA, 1967.

    Google Scholar 

  20. 10.(a)

    Eberlin, M. N. Triple stage pentaquadrupole (QqQqQ) mass spectrometry and ion/molecule reactions. Mass Spectrom. Rev. 1997, 16, 113–144.

    CAS  Article  Google Scholar 

  21. 10.(b)

    Juliano, V. F.; Gozzo, F. C.; Eberlin, M. N.; Kascheres, C.; Lago, C. L. Fast multidimensional (3D and 4D) MS2 and MS3 scans in a high-transmission pentaquadrupole mass spectrometer. Anal. Chem. 1996, 68, 1328–1334.

    CAS  Article  Google Scholar 

  22. 11.

    Eberlin, M. N. Structurally diagnostic ion/molecule reactions: Class and functional-group identification by mass spectrometry. J. Mass Spectrom. 2006, 41, 141–156.

    CAS  Article  Google Scholar 

  23. 12.(a)

    Giles, K.; Pringle, S. D.; Worthington, K. R.; Little, D.; Wildgoose, J. L.; Bateman, R. H.. Rapid Commun. Mass Spectrom. 2004, 18, 2401.

    CAS  Article  Google Scholar 

  24. 12.(b)

    Pringle, S. D.; Giles, K.; Wildgoose, J. L.; Williams, J. P.; Slade, S. E.; Thalassinos, K.; Bateman, R. H.; Bowers, M. T.; Scrivens, J. H. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/traveling wave IMS/oa-TOF instrument. Int. J. Mass Spectrom. 2007, 261, 1–12.

    CAS  Article  Google Scholar 

  25. 13.(a)

    Malow, M.; Penno, M.; Weitzel, K. M. The kinetics of methyl loss from ethylbenzene and xylene ions: The tropylium versus benzylium story revisited. J. Phys. Chem. A. 2003, 107, 10625–10630;

    CAS  Article  Google Scholar 

  26. 13.(b)

    Moon, J. H.; Choe, J. C.; Kim, M. S. Kinetic energy release distribution in the dissociation of toluene molecular ion: The tropylium versus benzylium story continues. J. Phys. Chem. A. 2000, 104, 458–463;

    CAS  Article  Google Scholar 

  27. 13.(c)

    Smith, B. J.; Hall, N. E. G2(MP2,SVP) study of the relationship between the benzyl and tropyl radicals and their cation analogues. Chem. Phys. Lett. 1997, 279, 165–171;

    CAS  Article  Google Scholar 

  28. 13.(d)

    Nicolaides, A.; Radom, L. Seven-membered ring or phenyl-substituted cation—relative stabilities of the tropylium and benzyl cations and their silicon analogs. J. Am. Chem. Soc. 1994, 116, 9769–9770;

    CAS  Article  Google Scholar 

  29. 13.(d)

    Cone, C.; Dewar, M. J. S.; Landman, D. Gaseous ions. 1. MINDO-3 study of rearrangement of benzyl cation to tropylium. J. Am. Chem. Soc. 1977, 99, 372–376;

    CAS  Article  Google Scholar 

  30. 13.(e)

    de Koster, C. G.; van Houte, J. J.; van Thuijl, J. Gas phase substitution reactions by radical cations. Part. 3. Methylene transfer of the C-C ring-opened oxirane radical cation to pyrazole and imidazole. Int. J. Mass Spectrom. Ion Processes. 1994, 134, 1–10;

    CAS  Article  Google Scholar 

  31. 13.(f)

    Speranza, M. Gas-phase reactivity of 5-membered heteroaromatics toward electrophiles, an experimental check on theoretical predictions. Pure Appl. Chem. 1991, 63, 243–254.

    CAS  Article  Google Scholar 

  32. 14.

    Eberlin, M. N. Gas-phase polar cycloadditions. Int. J. Mass Spectrom. 2004, 235, 263–278.

    CAS  Article  Google Scholar 

  33. 15.

    Meurer, E. C.; Eberlin, M. N. Gas-phase polar [4+ + 2] cycloaddition of cationic 2-azabutadienes with enol ethers. Int. J. Mass Spectrom. 2001, 210, 469–482.

    Article  Google Scholar 

  34. 16.

    Meurer, E. C.; Sparrapan, R.; Eberlin, M. N. Gas-phase polar [4+ + 2] cycloaddition with ethyl vinyl ether: A structurally diagnostic ion-molecule reaction for 2-azabutadienyl cations. J. Mass Spectrom. 2003, 38, 1075–1080.

    CAS  Article  Google Scholar 

  35. 17.

    Augusti, R.; Gozzo, F. C.; Moraes, L. A. B.; Sparrapan, R.; Eberlin, M. N. The simplest azabutadienes in their N-protonated forms: Generation, stability, and cycloaddition-reactivity in the gas phase. J. Org. Chem. 1998, 63, 4889–4897.

    CAS  Article  Google Scholar 

  36. 18.

    Eberlin, M. N.; Cooks, R. G. Polar [4 + 2+] Diels-Alder cycloadditions of acylium ions in the gas phase. J. Am. Chem. Soc. 1993, 115, 9226–9233.

    CAS  Article  Google Scholar 

  37. 19.

    Eberlin, M. N.; Morgon, N. H.; Yang, S. S.; Shay, B. J.; Cooks, R. G. Polar [4 + 2+] Diels-Alder cycloaddition to nitrilium and immonium ions in the gas-phase—applications of multiple stage mass-spectrometry in a pentaquadrupole instrument. J. Am. Soc. Mass Spectrom. 1995, 6, 1–10.

    CAS  Article  Google Scholar 

  38. 20.

    Cooks, R. G.; Chen, H.; Eberlin, M. N.; Zheng, X.; Tao, W. A. Polar acetylization and transacetylization in the gas phase: The Eberlin reaction. Chem. Rev. 2006, 106, 188–211.

    CAS  Article  Google Scholar 

  39. 21.

    Meurer, E. C.; Eberlin, M. N. Mono and double polar [4 + 2+] Diels-Alder cycloaddition of acylium ions with O-heterodienes. J. Mass Spectrom. 2002, 37, 146–154.

    CAS  Article  Google Scholar 

  40. 22.

    Barnes, C. A. S.; Hilderbrand, A. E.; Valentine, S. J.; Clemmer, D. E. Resolving isomeric peptide mixtures: A combined HPLC/ion mobility-TOFMS analysis of a 4000-component combinatorial library. Anal. Chem. 2002, 74, 26–36.

    Article  Google Scholar 

  41. 23.(a)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques. J. Am. Soc. Mass Spectrom. 2002, 13, 1078–1087.

    CAS  Article  Google Scholar 

  42. 23.(b)

    Borsdorf, H.; Rudolph, M. Gas-phase ion mobility studies of constitutional isomeric hydrocarbons using different ionization techniques. Int. J. Mass Spectrom. 2001, 208, 67–72.

    CAS  Article  Google Scholar 

  43. 24.

    Kolakowski, B. M.; Mester, Z. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst. 2007, 132, 842–864.

    CAS  Article  Google Scholar 

  44. 25.

    Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. Structural information from ion mobility measurements: Effects of the long-range potential. J. Phys. Chem. 1996, 100, 16082–16086.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Marcos N. Eberlin.

Additional information

Published online October 17, 2008

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benassi, M., Corilo, Y.E., Uria, D. et al. Recognition and resolution of isomeric alkyl anilines by mass spectrometry. J Am Soc Mass Spectrom 20, 269–277 (2009).

Download citation


  • Aniline
  • Acrolein
  • Dioxolane
  • Travel Wave
  • Substitute Aniline