Acta Mechanica Solida Sinica

, Volume 30, Issue 6, pp 608–617 | Cite as

Study on behaviors of functionally graded shape memory alloy cylinder

  • Bingfei Liu
  • Qingfei Wang
  • Rui Zhou
  • Chunzhi Du
  • Yanan Zhang
  • Pan Zhang


For better controllability in actuations, it is desirable to create Functionally Graded Shape Memory Alloys (FG-SMAs) in the actuation direction. It can be achieved by applying different heat treatment processes to create the gradient along the radius of a SMA cylinder. Analytical solutions are derived to predict the macroscopic behaviors of such a functionally graded SMA cylinder. The Tresca yield criterion and linear hardening are used to describe the different phase transformations with different gradient parameters. The numerical results for an example of the model exhibit different pseudo-elastic behaviors from the non-gradient case, as well as a variational hysteresis loop for the transformation, providing a mechanism for easy actuation control. When the gradient disappears, the model can degenerate to the non-gradient case.


Shape memory alloy Gradient Constitutive model Cylinder Internal pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.G. Boyd, D.C. Lagoudas, A thermodynamic constitutive model for the shape memory alloy materials. Part I. The monolithic shape memory alloy, Int. J. Plast. 12 (1996) 805–842.CrossRefGoogle Scholar
  2. 2.
    C.L. Chu, C.Y. Chung, P.H. Lin, S.D. Wang, Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis, Mater. Sci. Eng. A 366 (1) (2004) 114–119.CrossRefGoogle Scholar
  3. 3.
    L.J. Garner, L.N. Wilson, D.C. Lagoudas, O.K. Rediniotis, Development of a shape memory alloy actuated biomimetic vehicle, Smart Mater. Struct. 9 (2000) 673–683.CrossRefGoogle Scholar
  4. 4.
    V.E. Gyunter, P. Sysoliatin, T. Temerkahamor, Superelastic Shape Memory Implants in Maxillofacial Surgery, Traumatology, Orthopedics, and Neurosurgery, Tomsk University Publishing House, Tomsk, 1995.Google Scholar
  5. 5.
    A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth. Part I. Yield criteria and flow rules for porous media, J. Eng. Mater. Technol. 99 (1977) 2–15.CrossRefGoogle Scholar
  6. 6.
    A. Ilyin, M. Dudin, I. Makarova, NiTi instruments for TMJ surgeries, in: Conf. Proc. Superelastic Shape Memory Implants in Medicine. 1995, Tomsk, 1995, pp. 61–62.Google Scholar
  7. 7.
    D.C. Lagoudas, Z. Bo, M.A. Qidwai, A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composite, Mech. Compos. Mater. Struct. 3 (1996) 153–179.CrossRefGoogle Scholar
  8. 8.
    B.T. Lester, Y. Chenisky, D.C. Lagoudas, Transformation characteristics of shape memory alloy composites, Smart Mater. Struct. 20 (2011) 1–13.CrossRefGoogle Scholar
  9. 9.
    C. Liang, F. Davidson, L.M. Scjetky, F.K. Straub, Applications of torsional shape memory alloy actuators for active rotor blade control: opportunities and limitations, in: SPIE Proc. Mathematics and Controls in Smart Structures, 2717, 1996, pp. 91–100.Google Scholar
  10. 10.
    B.F. Liu, G.S. Dui, S.Y. Yang, On the transformation behavior of functionally graded SMA composites subjected to thermal loading, Eur. J. Mech. A 40 (2013) 139–147.MathSciNetCrossRefGoogle Scholar
  11. 11.
    B. Liu, C. Du, Effects of external pressure on phase transformation of shape memory alloy cylinder, Int. J. Mech. Sci. 88 (2014) 8–16.CrossRefGoogle Scholar
  12. 12.
    B.F. Liu, P.C. Ni, W. Zhang, On behaviors of the functionally graded shape memory alloy under thermo-mechanical coupling, Acta Mech. Solida Sin. 1 (29) (2016) 46–58.CrossRefGoogle Scholar
  13. 13.
    A.S. Mahmud, Y. Liu, T.H. Nam, Design of functionally graded NiTi by heat treatment, Phys. Scr. 129 (2007) 222–226.CrossRefGoogle Scholar
  14. 14.
    A.S. Mahmud, Y. Liu, T. Nam, Gradient anneal of functionally graded NiTi, Smart Mater. Struct. 17 (2008) 1–5.CrossRefGoogle Scholar
  15. 15.
    Q.L. Meng, Y.N. Liu, H. Yang, T.H. Nam, Laser annealing of functionally graded NiTi thin plate, Scr. Mater. 65 (2011) 1109–1112.CrossRefGoogle Scholar
  16. 16.
    R. Mirzaeifar, M. Shakeri, R. DesRoches, A. Yavari, A semi-analytic analysis of shape memory alloy thick-walled cylinders under internal pressure, Arch. Appl. Mech. 81 (2011) 1093–1116.CrossRefGoogle Scholar
  17. 17.
    E. Miyazaki, Y. Watanabe, Development of shape memory alloy fiber reinforced smart FGMs, Mater. Sci. Forum 423–425 (2003) 107–112.CrossRefGoogle Scholar
  18. 18.
    I. Müller, S. Seelecke, Thermodynamic aspects of shape memory alloys, Math. Comput. Model. 34 (12–13) (2001) 1307–1355.MathSciNetCrossRefGoogle Scholar
  19. 19.
    M.A. Qidwai, D.C. Lagoudas, On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material, Int. J. Plast. 16 (2000) 1309–1343.CrossRefGoogle Scholar
  20. 20.
    S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi, I. Bar-on, Y. Suzuki, A. Masuda, An overview of vibration and seismic application of NiTi shape memory alloy, Smart Mater. Struct. 11 (2012) 218–229.CrossRefGoogle Scholar
  21. 21.
    B.S. Shariat, Y.N. Liu, G. Rio, Modelling and experimental investigation of geometrically graded NiTi shape memory alloys, Smart Mater. Struct. 22 (2013) 025030.CrossRefGoogle Scholar
  22. 22.
    M. Tabesh, B.F. Liu, J. Boyd, D.C. Lagoudas, Analytical Solution for pseudoelastic response of a shape memory thick-walled cylinder under internal pressure, Smart Mater. Struct. 22 (2013) 094007.CrossRefGoogle Scholar
  23. 23.
    S.Y. Yang, G.S. Dui, B.Y. Ma, Temperature variation of a NiTi wire considering the effects of test machine grips, Acta Mech. 226 (8) (2015) 2573–2580.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Y.P. Zhang, X.P. Zhang, Z.Y. Zhong, Fabrication, transformation and superelasticity behavior of NiTi memory alloy with large pore-size and gradient porosity, Acta Metall. Sinica 43 (11) (2007) 1221–1227.Google Scholar
  25. 25.
    Y.P. Zhu, Y.L. Gu, H.G. Liu, A macroscopic constitutive model of temperature induced phase transition of polycrystalline Ni2MnGa by directional solidification, Mater. Sci. Eng. A 616 (2015) 474–479.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  • Bingfei Liu
    • 1
  • Qingfei Wang
    • 1
  • Rui Zhou
    • 2
  • Chunzhi Du
    • 2
  • Yanan Zhang
    • 1
  • Pan Zhang
    • 2
  1. 1.Airport CollegeCivil Aviation University of ChinaTianjinChina
  2. 2.Aeronautical engineering CollegeCivil Aviation University of ChinaTianjinChina

Personalised recommendations