Acta Mechanica Solida Sinica

, Volume 30, Issue 6, pp 557–572 | Cite as

Analysis of meso-inhomogeneous deformation on a metal material surface under low-cycle fatigue

  • Gui-Long Liu
  • Ke-Shi Zhang
  • Xian-Ci Zhong
  • Jiann Woody Ju
Article
  • 1 Downloads

Abstract

A polycrystalline Voronoi aggregation with a free surface is applied as the representative volume element (RVE) of the nickel-based GH4169 superalloy. Considering the plastic deformation mechanism at the grain level and the Bauschinger effect, a crystal plasticity model reflecting the nonlinear kinematic hardening of crystal slipping system is applied. The microscopic inhomogeneous deformation during cyclic loading is calculated through numerical simulation of crystal plasticity. The deformation inhomogeneity on the free surface of the RVE under cyclic loading is described respectively by using the following parameters: standard deviation of the longitudinal strain in macro tensile direction, statistical average of first principal strains, and standard deviation of longitudinal displacement. The relationship between the fatigue cycle number and the evolution of inhomogeneous deformation of the material’s free surface is investigated. This research finds that: (1) The inhomogeneous deformation of the material free surface is significantly higher than that of the RVE inside; (2) the increases of the characterization parameters of inhomogeneous deformation on the free surface with cycles reflect the local maximum deformation of the RVE growing during cyclic loading; (3) these parameters can be used as criteria to assess and predict the low-cycle fatigue life rationally.

Keywords

Inhomogeneous deformation Surface Grain-level Crystal plasticity Low-cycle fatigue Life prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Subra, Fatigue of Materials, 2nd Edition, Cambridge University Press, 1998.Google Scholar
  2. 2.
    E. Santecchia, Hamouda, A.M.S. Musharavati, F. Zalnezhad, E. Cabibbo, M. El Mehtedi, S. Spigarelli, A review on fatigue life prediction methods for metals, Adv Mater Sci Eng (2016) Article ID 9573524.Google Scholar
  3. 3.
    J.L. Chaboche, P. Kanouté, F. Azzouz, Cyclic inelastic constitutive equations and their impact on the fatigue life predictions, Int. J. Plast. 35 (2) (2012) 44–66.Google Scholar
  4. 4.
    S.C. Roy, S. Goyal, R. Sandhya, S.K. Ray, Low cycle fatigue life prediction of 316 L (N) stainless steel based on cyclic elasto-plastic response, Nucl. Eng. Des. 253 (12) (2012) 219–225.CrossRefGoogle Scholar
  5. 5.
    A. Ince, G. Glinka, A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings, Int. J. Fatigue 62 (2) (2014) 34–41.CrossRefGoogle Scholar
  6. 6.
    F. Shen, W.P. Hu, Q.C. Meng, M. Zhang, A new damage mechanics based approach to fatigue life prediction and its engineering application, Acta Mech. Solida Sin. 28 (5) (2015) 510–520.CrossRefGoogle Scholar
  7. 7.
    R.I. Stephens, A. Fatemi, R.R. Stephens, H.O. Fuchs, Metal fatigue in engineering, Eng. Comput. 27 (2) (2000) 280–294.Google Scholar
  8. 8.
    J.D. Morrow, Cyclic plastic strain energy and fatigue of metals, in: Internal Friction, Damping, and Cyclic Plasticity, West Conshohocken, ASTM, PA, 1965, pp. 45–86.CrossRefGoogle Scholar
  9. 9.
    O.H. Basquin, The exponential law of endurance tests, Am. Soc. Test. Mater. Proc. 10 (1910) 625–630.Google Scholar
  10. 10.
    S.S. Manson, Behavior of materials under conditions of thermal stress, in: Proceedings of Heat Transfer Symposium, MI, University of Michigan Engineering Research Institute, 1953, pp. 9–75.Google Scholar
  11. 11.
    L.F. Coffin Jr., A study of the effect of cyclic thermal stresses on a ductile metal, Trans. ASME 76 (1954) 931–950.Google Scholar
  12. 12.
    D. Radaj, Review of fatigue strength assessment of nonwelded and welded structures based on local parameters, Int. J. Fatigue 18 (3) (1996) 153–170.CrossRefGoogle Scholar
  13. 13.
    J. Man, T. Vystavěl, A. Weidner, I. Kuběna., M. Petrenec, T. Kruml, J. Polák, Study of cyclic strain localization and fatigue crack initiation using FIB technique, Int. J. Fatigue 39 (39) (2012) 44–53.CrossRefGoogle Scholar
  14. 14.
    J. Polák, J. Man, Mechanisms of extrusion and intrusion formation in fatigued crystalline materials, Mater. Sci. Eng. A 596 (596) (2014) 15–24.CrossRefGoogle Scholar
  15. 15.
    X.D. Li, H.M. Xie, Y.L. Kang, X.P. Wu, A brief review and prospect of experimental solid mechanics in China, Acta Mech. Solida Sin. 23 (6) (2010) 498–548.CrossRefGoogle Scholar
  16. 16.
    K.S. Zhang, Y.K. Shi, J.W. Ju, Grain-level statistical plasticity analysis on strain cycle fatigue of a FCC metal, Mech. Mater. 64 (7) (2013) 76–90.CrossRefGoogle Scholar
  17. 17.
    K.S. Zhang, J.W. Ju, Z. Li, Y.L. Bai, W. Brocks, Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity, Mech. Mater. 85 (2015) 16–37.CrossRefGoogle Scholar
  18. 18.
    D. Novovic, R.C. Dewes, D.K. Aspinwall, W. Voice, P. Bowen, The effect of machined topography and integrity on fatigue life, Int. J. Mach. Tools Manuf. 44 (2–3) (2004) 125–134.CrossRefGoogle Scholar
  19. 19.
    J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials, Proc R. Soc Lond. A 348 (1976) 101–127.CrossRefGoogle Scholar
  20. 20.
    J.L. Chaboche, Constitutive equations for cyclic plasticity and viscoplasticity, Int. J. Plast. 5 (3) (1989) 247–302.CrossRefGoogle Scholar
  21. 21.
    L. Feng, G. Zhang, K.S. Zhang, Discussion of cyclic plasticity and viscoplasticity of single crystal nickel-based superalloy in large strain analysis: comparison of anisotropic macroscopic model and crystallographic model, Int. J. Mech. Sci. 46 (8) (2004) 1157–1171.CrossRefGoogle Scholar
  22. 22.
    K.S. Zhang, Y.K. Shi, L.B. Xu, Anisotropy of yielding/hardening and micro inhomogeneity of deforming/rotating for a polycrystalline metal under cyclic tension–compression, Acta Metall. Sin. 47 (10) (2011) 1292–1300 (in Chinese).Google Scholar
  23. 23.
    J. Pan, J.R. Rice, Rate sensitivity of plastic flow and implications for yield-surface vertices, Int. J. Solids Struct. 19 (11) (1983) 973–987.CrossRefGoogle Scholar
  24. 24.
    J.W. Hutchinson, Elastic-plastic behaviour of polycrystalline metals and composites, Proc R. Soc Lond. A 1976 (319) (1970) 247–272.CrossRefGoogle Scholar
  25. 25.
    Y.W. Chang, R.J. Asaro, An experimental study of shear localization in aluminum-copper single crystals, Acta Metall. 29 (1) (1981) 241–257.CrossRefGoogle Scholar
  26. 26.
    R. Hill, J.R. Rice, Constitutive analysis of elastic-plastic crystal at arbitrary strain, J. Mech. Phys. Solids 20 (6) (1972) 401–413.CrossRefGoogle Scholar
  27. 27.
    R.J. Asaro, J.R. Rice, Strain localization in ductile single crystals, J. Mech. Phys. Solids 25 (5) (1977) 309–338.CrossRefGoogle Scholar
  28. 28.
    D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids, Acta Metall. 31 (12) (1983) 1951–1976.CrossRefGoogle Scholar
  29. 29.
    A. Needleman, R.J. Asaro, J. Lemonds, D. Peirce, Finite element analysis of crystalline solids, Comput. Methods Appl. Mech. Eng. 52 (1–3) (1985) 689–708.CrossRefGoogle Scholar
  30. 30.
    K.S. Zhang, Microscopic heterogeneity and macroscopic mechanical behavior of a polycrystalline material, Acta Mech. Sin. 36 (6) (2004) 714–723 (In Chinese).Google Scholar
  31. 31.
    K.S. Zhang, M.S. W, R. Feng, Simulation of microplasticity-induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling, Int. J. Plast. 21 (4) (2005) 801–834.CrossRefGoogle Scholar
  32. 32.
    H.Y. Li, Y.H. Kong, G.S. Chen, L.X. Xie, S.G. Zhu, X. Sheng, Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy, Mater. Sci. Eng. A 582 (11) (2013) 368–373.CrossRefGoogle Scholar
  33. 33.
    X.R. Wu, S.J. Yang, X.P. Han, S.L. Liu, Q.S. Liu, K.R. Lu, et al., Data manual for materials of aero-engine, Aircraft Engine Design Data Manual For Materials, Aviation Industry Press, China, 2008 (In Chinese).Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  • Gui-Long Liu
    • 1
  • Ke-Shi Zhang
    • 1
  • Xian-Ci Zhong
    • 2
  • Jiann Woody Ju
    • 1
    • 3
  1. 1.College of Civil Engineering and ArchitectureGuangxi University, Key Lab of Disaster Prevention and Structural Safety; Guangxi Key Lab Disaster Prevention and Engineering SafetyNanningChina
  2. 2.College of Mathematics and Information ScienceGuangxi UniversityNanningChina
  3. 3.Department of Civil and Environmental EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations