Acta Mechanica Solida Sinica

, Volume 30, Issue 6, pp 630–637 | Cite as

The application of nonlocal theory method in the coarse-grained molecular dynamics simulations of long-chain polylactic acid

  • Xiongjun Li
  • Tan Xiao
  • Neng Xiao


The micro-capsules used for drug delivery are fabricated using polylactic acid (PLA), which is a biomedical material approved by the FDA. A coarse-grained model of long-chain PLA was built, and molecular dynamics (MD) simulations of the model were performed using a MARTINI force field. Based on the nonlocal theory, the formula for the initial elastic modulus of polymers considering the nonlocal effect was derived, and the scaling law of internal characteristic length of polymers was proposed, which was used to adjust the cut-off radius in the MD simulations of PLA. The results show that the elastic modulus should be computed using nonlinear regression. The nonlocal effect has a certain influence on the simulation results of PLA. According to the scaling law, the cut-off radius was determined and applied to the MD simulations, the results of which reflect the influence of the molecular weight change on the elastic moduli of PLA, and are in agreement with the experimental outcome.


Polylactic acid Molecular dynamics simulation Nonlocal theory Scaling law Cut-off radius 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Tinkov, R. Bekeredjian, G. Winter, C. Coester, Microbubbles as ultrasound triggered drug carriers, J. Pharm. Sci. 98 (2009) 1935–1961.CrossRefGoogle Scholar
  2. 2.
    S.P. Qin, C.F. Caskey, K.W. Ferrara, Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering, Phys. Med. Biol. 54 (2009) R27–R57.CrossRefGoogle Scholar
  3. 3.
    M. Stepniewski, A. Bunker, M. Pasenkiewicz-Gierula, M. Karttunen, T. Rog, Effects of the lipid bilayer phase state on the water membrane interface, J. Phys. Chem. B 114 (2010) 11784–11792.CrossRefGoogle Scholar
  4. 4.
    L. Hoff, Oscillations of polymeric microbubbles: effect of the encapsulating shell, J. Acoust. Soc. Am. 107 (2000) 2272–2280.CrossRefGoogle Scholar
  5. 5.
    A.N. Damir, B. Khismatullin, Radial oscillations of encapsulated microbubbles in viscoelastic liquids, Phys. Fluids 14 (2002) 3534–3557.CrossRefGoogle Scholar
  6. 6.
    D. Garlotta, A literature review of poly(lactic acid), J. Polym. Environ. 9 (2001) 63–84.CrossRefGoogle Scholar
  7. 7.
    A.P. Mathew, K. Oksman, M. Sain, Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC), J. Appl. Polym. Sci. 97 (2005) 2014–2025.CrossRefGoogle Scholar
  8. 8.
    C.C. Chen, J.Y. Chueh, H. Tseng, H.M. Huang, S.Y. Lee, Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials 24 (2003) 1167–1173.CrossRefGoogle Scholar
  9. 9.
    I. Engelberg, J. Kohn, Physico-mechanical properties of degradable polymers used in medical applications: a comparative study, Biomaterials 12 (1991) 292–304.CrossRefGoogle Scholar
  10. 10.
    H.Z. Xiang, W.H. Yang, C.B. Hu, Y.H. Mu, J.F. Li, Study of the mechanical and thermal properties of poly(lactic acid) and poly(ethylene glycol) block copolymer with molecular dynamics, J. Polym. Anal. Charact. 15 (2010) 235–244.CrossRefGoogle Scholar
  11. 11.
    S.J. Marrink, A.H. de Vries, A.E. Mark, Coarse grained model for semiquantitative lipid simulations, J. Phys. Chem. B 108 (2004) 750–760.CrossRefGoogle Scholar
  12. 12.
    S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, The MARTINI force field: coarse grained model for biomolecular simulations, J. Phys. Chem. B 111 (2007) 7812–7824.CrossRefGoogle Scholar
  13. 13.
    L. Monticelli, S.K. Kandasamy, X. Periole, R.G. Larson, D.P. Tieleman, S. Marrink, The MARTINI coarse-grained force field: extension to proteins, J. Chem. Theory Comput. 4 (2008) 819–834.CrossRefGoogle Scholar
  14. 14.
    C.A. Lopez, A.J. Rzepiela, A.H. de Vries, L. Dijkhuizen, P.H. Hunenberger, S.J. Marrink, Martini coarse-grained force field: extension to carbohydrates, J. Chem. Theory Comput. 5 (2009) 3195–3210.CrossRefGoogle Scholar
  15. 15.
    J.J. Uusitalo, H.I. Ingolfsson, P. Akhshi, D.P. Tieleman, S.J. Marrink, Martini coarse-grained force field: extension to DNA, J. Chem. Theory Comput. 11 (2015) 3932–3945.CrossRefGoogle Scholar
  16. 16.
    G. Rossi, I. Giannakopoulos, L. Monticelli, N.K.J. Rostedt, S.R. Puisto, C. Lowe, A.C. Taylor, I. Vattulainen, T. Ala-Nissila, A MARTINI coarse-grained model of a thermoset polyester coating, Macromolecules 44 (2011) 6198–6208.CrossRefGoogle Scholar
  17. 17.
    A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (1983) 4703–4710.CrossRefGoogle Scholar
  18. 18.
    E.C. Aifantis, On the role of gradients in the localization of deformation and fracture, Int. J. Eng. Sci. 30 (1992) 1279–1299.CrossRefGoogle Scholar
  19. 19.
    H. Askes, I.M. Gitman, Review and critique of the stress gradient elasticity theories of Eringen and Aifantis, Adv. Mech. Math. 21 (2010) 203–210.MathSciNetCrossRefGoogle Scholar
  20. 20.
    H. Askes, E.C. Aifantis, Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results, Int. J. Solids Struct. 48 (2011) 1962–1990.CrossRefGoogle Scholar
  21. 21.
    J. Fernandez-Saez, R. Zaera, J.A. Loya, J.N. Reddy, Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved, Int. J. Eng. Sci. 99 (2016) 107–116.MathSciNetCrossRefGoogle Scholar
  22. 22.
    W. Sumelka, R. Zaera, J. Fernandez-Saez, A theoretical analysis of the free axial vibration of non-local rods with fractional continuum mechanics, Meccanica 50 (2015) 2309–2323.Google Scholar
  23. 23.
    P. Lu, P.Q. Zhang, H.P. Lee, C.M. Wang, J.N. Reddy, Non-local elastic plate theories, Proc. R. Soc. A 463 (2007) 3225–3240.MathSciNetCrossRefGoogle Scholar
  24. 24.
    S.A. Fazelzadeh, E. Ghavanloo, Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality, Compos. Struct. 94 (2012) 1016–1022.CrossRefGoogle Scholar
  25. 25.
    E. Ghavanloo, S.A. Fazelzadeh, Nonlocal elasticity theory for radial vibration of nanoscale spherical shell, Eur. J. Mech. A Solid 41 (2013) 37–42.MathSciNetCrossRefGoogle Scholar
  26. 26.
    L. Monticelli, S. Kandasamy, X. Periole, R. Larson, D.P. Tieleman, S.J. Marrink, The MARTINI coarse grained force field: extension to proteins, J. Chem. Theory Comput. 4 (2008) 819–834.CrossRefGoogle Scholar
  27. 27.
    S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, The MARTINI force field: coarse grained model for biomolecular simulations, J. Phys. Chem. B 111 (2007) 7812–7824.CrossRefGoogle Scholar
  28. 28.
    C. Wei, Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites, Nano Lett. 2 (2002) 647–650.CrossRefGoogle Scholar
  29. 29.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, New York, 1985.Google Scholar
  30. 30.
    P.J. Flory, Molecular theory of rubber elasticity, Polym. J. 17 (1985) 1–12.CrossRefGoogle Scholar
  31. 31.
    S.H. Wu, Chain structure and Entanglement, J. Polym. Sci. Part B Polym. Phys. 27 (1989) 723–741.CrossRefGoogle Scholar
  32. 32.
    W.W. Graessley, S.F. Edwards, Entanglement interactions in polymers and the chain contour concentration, Polymer 22 (1981) 1329–1334.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.Architecture and Civil Engineering InstituteGuangdong University of Petrochemical TechnologyMaomingChina
  2. 2.School of EngineeringSun Yat-sen UniversityGuangzhouChina
  3. 3.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations