Acta Mechanica Solida Sinica

, Volume 30, Issue 5, pp 493–506 | Cite as

Influences of initial porosity, stress triaxiality and Lode parameter on plastic deformation and ductile fracture

  • Ying-Song Ma
  • Dong-Zhi Sun
  • Florence Andrieux
  • Ke-Shi Zhang


Local mechanical properties in aluminum cast components are inhomogeneous as a consequence of spatial distribution of microstructure, e.g., porosity, inclusions, grain size and arm spacing of secondary dendrites. In this work, the effect of porosity is investigated. Cast components contain voids with different sizes, forms, orientations and distributions. This is approximated by a porosity distribution in the following. The aim of this paper is to investigate the influence of initial porosity, stress triaxiality and Lode parameter on plastic deformation and ductile fracture. A micromechanical model with a spherical void located at the center of the matrix material, called the representative volume element (RVE), is developed. Fully periodic boundary conditions are applied to the RVE and the values of stress triaxiality and Lode parameter are kept constant during the entire course of loading. For this purpose, a multi-point constraint (MPC) user subroutine is developed to prescribe the loading. The results of the RVE model are used to establish the constitutive equations and to further investigate the influences of initial porosity, stress triaxiality and Lode parameter on elastic constant, plastic deformation and ductile fracture of an aluminum die casting alloy.


Stress triaxiality Lode parameter Void Ductile fracture RVE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.Z. Sun, Y.S. Ma, F. Andrieux, Modeling of the influence of pore morphology on damage behavior of an aluminum die casting alloy, Mater. Sci. Forum 794–796 (2014) 319–324.CrossRefGoogle Scholar
  2. 2.
    Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci. 46 (2004) 81–98.CrossRefGoogle Scholar
  3. 3.
    I. Barsoum, J. Faleskog, Rupture mechanisms in combined tension and shear—experiments, Int. J. Solids Struct. 44 (2007) 1768–1786.CrossRefGoogle Scholar
  4. 4.
    I. Barsoum, J. Faleskog, Rupture mechanisms in combined tension and shear—micromechanics, Int. J. Solids Struct. 44 (2007) 5481–5498.CrossRefGoogle Scholar
  5. 5.
    I. Barsoum, J. Faleskog, Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence, Int. J. Solids Struct. 48 (2011) 925–938.CrossRefGoogle Scholar
  6. 6.
    A.A. Benzerga, J.-B. Leblond, Ductile fracture by void growth to coalescence, Adv. Appl. Mech. 44 (2010) 169–305.CrossRefGoogle Scholar
  7. 7.
    A.A. Benzerga, D. Surovik, S.M. Keralavarma, On the path-dependence of the fracture locus in ductile materials analysis, Int. J. Plasticity. 37 (2012) 157–170.CrossRefGoogle Scholar
  8. 8.
    Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plasticity 24 (2008) 1071–1096.CrossRefGoogle Scholar
  9. 9.
    R. Becker, A. Needleman, O. Richmond, V. Tvergaard, Void growth and failure in notched bars, J. Mech. Phys. Solids 36 (1988) 317–351.CrossRefGoogle Scholar
  10. 10.
    K.S. Zhang, J.B. Bai, D. Francois, Numerical analysis of the influence of the Lode parameter on void growth, Int. J. Solids Struct. 38 (2001) 5847–5856.CrossRefGoogle Scholar
  11. 11.
    K. Danas, P.P. Castaneda, Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials, Int. J. Solids Struct. 49 (2012) 1325–1342.CrossRefGoogle Scholar
  12. 12.
    G. Mirone, R. Barbagallo, D. Corallo, A new yield criteria including the effect of Lode angle and stress triaxiality, Proc. Struct. Integr. 2 (2016) 3684–3696.CrossRefGoogle Scholar
  13. 13.
    Y. Lou, H. Huh, Evaluation of ductile fracture criteria in a general three-dimensional stress state considering the stress triaxiality and the Lode parameter, Acta Mech. Solida Sin. 26 (6) (2013) 642–658.CrossRefGoogle Scholar
  14. 14.
    T. Wierzbicki, Y.B. Bao, Calibration and evaluation of seven fracture models, Int. J. Mech. Sci. 47 (2005) 719–743.CrossRefGoogle Scholar
  15. 15.
    W.C. Li, F.F. Liao, T.H. Zhou, H. Askes, Ductile fracture of Q460 steel: Effects of stress triaxiality and Lode angle, J. Constr. Steel Res 123 (2016) 1–17.CrossRefGoogle Scholar
  16. 16.
    J. Kim, X.S. Gao, T.S. Srivatsan, Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity, Eng. Fract. Mech 71 (2004) 379–400.CrossRefGoogle Scholar
  17. 17.
    G. Razaz, Casting Practices Influencing Inclusion Distribution in Al-Billets, Karlstads University, Sweden, 2013 Degree Project For Master of Science.Google Scholar
  18. 18.
    C. Butcher, Z.T. Chen, Continuum void nucleation model for Al-Mg alloy sheet based on measured particle distribution, Acta Mech. Solida Sin. 22 (5) (2009) 391–398.CrossRefGoogle Scholar
  19. 19.
    Q.M. Yu, Influence of the stress state on void nucleation and subsequent growth around inclusion in ductile material, Int. J. Fract. 193 (1) (2015) 43–57.CrossRefGoogle Scholar
  20. 20.
    F. Dunne, N. Petrinic, Introduction to Computational Plasticity, Oxford University Press on Demand, 2005.Google Scholar
  21. 21.
    Z.H. Xia, Y.F. Zhang, F. Ellyin, A unified periodical boundary conditions for representative volume elements of composites and applications, Int. J. Solids Struct. 40 (2003) 1907–1921.CrossRefGoogle Scholar
  22. 22.
    R. Franz, E. Philip, R.B. Tomas, R. Dierk, Crystal Plasticity Finite Element Methods in Materials Science and Engineering, WILEY-VCH Verlag GmbH & Co. KGaA, 2010.Google Scholar
  23. 23.
    ABAQUS 6.14 documentation, 2014 Dassault Systèmes.Google Scholar
  24. 24.
    C. Tekoglu, Representative volume element calculations under constant stress triaxiality, Lode parameter, and shear ratio, Int. J. Solids Struct. 51 (2014) 4544–4553.CrossRefGoogle Scholar
  25. 25.
    M. Kuna, D.Z. Sun, Three-dimensional cell model analyses of void growth in ductile material, Int. J. Fract 81 (1996) 235–258.CrossRefGoogle Scholar
  26. 26.
    R. Kiran, K. Khandelwal, A triaxiality and Lode parameter dependent ductile fracture criterion, Eng. Fract. Mech 128 (2014) 121–138.CrossRefGoogle Scholar
  27. 27.
    X.S. Gao, J. Kim, Modeling of ductile fracture: significance of void coalescence, Int. J. Solids Struct 43 (2006) 6277–6293.CrossRefGoogle Scholar
  28. 28.
    C. Butcher, Z.T. Chen, A void coalescence model for combined tension and shear, Model. Simul. Mater. Sci. Eng. 17 (2) (2009) 025007.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.College of Civil Engineering and ArchitectureGuangxi University, Key Lab of Disaster Prevention and Structural Safety, Guangxi Key Lab Disaster Prevention and Engineering SafetyNanningChina
  2. 2.Department of Mining EngineeringShanxi Datong UniversityDatongChina
  3. 3.Fraunhofer Institute for Mechanics of Materials IWMFreiburgGermany

Personalised recommendations