Acta Mechanica Solida Sinica

, Volume 30, Issue 5, pp 531–539 | Cite as

Topology optimization of piezocomposite resonator for maximizing excitation strength and synthesizing desired eigenmodes

  • Xuansheng Wang
  • Zheqi Lin
  • Yiru Ren


A topology optimization method is proposed for the design of piezocomposite resonator with the aim of maximizing excitation strength and synthesizing desired eigenmodes. The objective function consists of maximizing the electromechanical coupling strength at the mode of interest. The topology layout of a structure with desired eigenmodes is obtained by adding the modal assurance criterion as additional constraint in the topology optimization model. Numerical examples are presented and the results illustrate that aside from maximizing the electromechanical coupling strength, the existing eigenmode of the piezocomposite resonator can be modified to be the desired one at the mode of interest.


Topology optimization Piezocomposite resonator Finite element method Electromechanical coupling coefficient Modal assurance criterion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.C.N. Silva, N. Kikuchi, Design of piezoelectric transducers using topology optimization, Smart Mater. Struct. 8 (1999) 350–364.CrossRefGoogle Scholar
  2. 2.
    S.W. Or, H.L.W. Chan, P.C.K. Liu, Piezocomposite ultrasonic transducer for high-frequency wire-bonding of microelectronics devices, Sensors Actuator A Phys. 133 (2007) 195–199.CrossRefGoogle Scholar
  3. 3.
    V. Ruiz-Díez, T. Manzaneque, J. Hernando-García, A. Ababneh, M. Kucera, U. Schmid, et al., Design and characterization of AIN-based in-plane microplate resonators, J. Micromech. Microeng. 23 (2013) 074003.CrossRefGoogle Scholar
  4. 4.
    J.L. Sanchez-Rojas, J. Hernando, A. Donoso, J.C. Bellido, T. Manzaneque, A. Ababneh, et al., Modal optimization and filtering in piezoelectric microplate resonators, J. Micromech. Microeng 20 (2010) 055027.CrossRefGoogle Scholar
  5. 5.
    Y. Ha, S. Cho, Design sensitivity analysis and topology optimization of eigenvalue problems for piezoelectric resonators, Smart Mater. Struct. 15 (2006) 1513.CrossRefGoogle Scholar
  6. 6.
    E.C.N. Silva, J.S. Ono Fonseca, F.M. de Espinosa, A.T. Crumm, G.A. Brady, J.W. Halloran, et al., Design of piezocomposite materials and piezoelectric transducers using topology optimization – Part I, Arch. Comput. Method E. 6 (1999) 117–182.CrossRefGoogle Scholar
  7. 7.
    M.P. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng. 71 (1988) 197–224.MathSciNetCrossRefGoogle Scholar
  8. 8.
    M.P. Bendsøe, Optimal shape design as a material distribution problem, Struct. Optim. 1 (1989) 193–202.CrossRefGoogle Scholar
  9. 9.
    Y.M. Xie, G.P. Steven, A simple evolutionary procedure for structural optimization, Comput. Struct. 49 (1993) 885–896.CrossRefGoogle Scholar
  10. 10.
    M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng. 192 (2003) 227–246.MathSciNetCrossRefGoogle Scholar
  11. 11.
    X. Guo, W. Zhang, J. Zhang, J. Yuan, Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons, Comput. Methods Appl. Mech. Eng. 310 (2016) 711–748.MathSciNetCrossRefGoogle Scholar
  12. 12.
    X. Guo, W. Zhang, W. Zhong, Doing topology optimization explicitly and geometrically – a new moving morphable components based framework, J. Appl. Mech. 81 (2014) 081009.CrossRefGoogle Scholar
  13. 13.
    W. Zhang, W. Yang, J. Zhou, D. Li, X. Guo, Structural topology optimization through explicit boundary evolution, J. Appl. Mech. 84 (2016) 011011.CrossRefGoogle Scholar
  14. 14.
    W. Zhang, J. Yuan, J. Zhang, X. Guo, A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model, Struct. Multidisc. Optim. 53 (2016) 1243–1260.MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Deaton, R. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: post 2000, Struct. Multidisc. Optim. 49 (2014) 1–38.MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Kögl, E.C.N. Silva, Topology optimization of smart structures: design of piezoelectric plate and shell actuators, Smart Mater. Struct. 14 (2005) 387–399.CrossRefGoogle Scholar
  17. 17.
    F. Wein, M. Kaltenbacher, E. Bänsch, G. Leugering, F. Schury, Topology optimization of a piezoelectric-mechanical actuator with single- and multiple-frequency excitation, Int. J. Appl. Electromagn. Mech. 30 (2009) 201–221.Google Scholar
  18. 18.
    X. Zhang, Z. Kang, Dynamic topology optimization of piezoelectric structures with active control for reducing transient response, Comput. Methods Appl. Mech. and Eng. 281 (2014) 200–219.MathSciNetCrossRefGoogle Scholar
  19. 19.
    B. Zheng, C.J. Chang, H. Gea, Topology optimization of energy harvesting devices using piezoelectric materials, Struct. Multidisc. Optim. 38 (2009) 17–23.CrossRefGoogle Scholar
  20. 20.
    S. Chen, S. Gonella, W. Chen, W.K. Liu, A level set approach for optimal design of smart energy harvesters, Comput. Methods Appl. Mech. Eng. 199 (2010) 2532–2543.MathSciNetCrossRefGoogle Scholar
  21. 21.
    C.J. Rupp, A. Evgrafov, K. Maute, M.L. Dunn, Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells, J. Intell. Mater. Syst. Struct. 20 (2009) 1923–1939.CrossRefGoogle Scholar
  22. 22.
    Z.Q. Lin, H. Gea, S.T. Liu, Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization, Acta Mech. Sinica 27 (2011) 730–737.MathSciNetCrossRefGoogle Scholar
  23. 23.
    P.H. Nakasone, E.C.N. Silva, Dynamic design of piezoelectric laminated sensors and actuators using topology optimization, J. Intell. Mater. Syst. Struct. 21 (2010) 1627–1652.CrossRefGoogle Scholar
  24. 24.
    W.M. Rubio, H.P. Glaucio, S. Emilio Carlos Nelli, Tailoring vibration mode shapes using topology optimization and functionally graded material concepts, Smart Mater. Struct. 20 (2011) 025009.CrossRefGoogle Scholar
  25. 25.
    R. Lerch, Simulation of piezoelectric devices by two- and three-dimensional finite elements, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 (1990) 233–247.CrossRefGoogle Scholar
  26. 26.
    Z. Kang, L. Tong, Topology optimization-based distribution design of actuation voltage in static shape control of plates, Comput. Struct. 86 (2008) 1885–1893.CrossRefGoogle Scholar
  27. 27.
    Z. Kang, L. Tong, Integrated optimization of material layout and control voltage for piezoelectric laminated plates, J. Intell. Mater. Syst. Struct. 19 (2008) 889–904.CrossRefGoogle Scholar
  28. 28.
    J. Zelenka, Piezoelectric Resonators and Their Applications, Elsevier Science Publishers B. V., 1986.Google Scholar
  29. 29.
    D. Ewins, Modal Testing: Theory, Practice and Application, second ed., Research Studies Press Ltd, England, 2000.Google Scholar
  30. 30.
    R.L. Fox, M.P. Kapoor, Rates of change of eigenvalues and eigenvectors, AIAA J. 6 (1968) 2426–2429.CrossRefGoogle Scholar
  31. 31.
    R.B. Nelson, Simplified calculation of eigenvector derivatives, AIAA J. 14 (1976) 1201–1205.MathSciNetCrossRefGoogle Scholar
  32. 32.
    I.W. Lee, G.H. Jung, An efficient algebraic method for the computation of natural frequency and mode shape sensitivities – Part I. Distinct natural frequencies, Comput. Struct. 62 (1997) 429–435.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2017

Authors and Affiliations

  1. 1.School of Software EngineeringShenzhen Institute of Information TechnologyShenzhenChina
  2. 2.Shenzhen Research Institute of Sun Yat-sen UniversityShenzhenChina
  3. 3.College of Mechanical and Vehicle EngineeringHunan UniversityChangshaChina

Personalised recommendations