Skip to main content
Log in

Dynamic response of a Q&P steel to high-strain-rate tension

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The experimental study on the volume fraction of retained austenite for QP980CR steel under high-strain-rate tension is briefly described. An interrupted tensile split Hopkinson bar (TSHB) is developed to control the elongation of specimens. The QP980CR steel samples recovered from the interrupted TSHB tests are investigated using synchrotron X-ray diffraction (XRD) to analyze the effects of strain and strain rate on the martensitic transformation of retained austenite. A constitutive model of QP980CR steel coupling with the transformation-induced plasticity (TRIP) effect is presented based on Delannay’s mean-field modeling. The stress—strain curves of quasi-static and dynamic tensile tests for QP980CR steel are compared with the results predicted by the presented constitutive model. The diffuse necking of QP980CR steel sheet specimens in TSHB tests is analyzed using Batra and Wei’s instability criterion and the presented constitutive model. The effects of strain rate and temperature on the dynamic tensile fracture strain of QP980CR steel are also given. © 2017 Published by Elsevier Ltd on behalf of Chinese Society of Theoretical and Applied

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Horvath, J.R. Fekete, Opportunities and challenges for increased usage of advanced high strength steels in automotive applications, in: Proceedings of the International Conference on Advanced High-Strength Sheet Steels for Automotive Application, Warrendale, PA, AIST, 2004, pp. 3–10.

  2. J.G. Speer, C. Fernando, R. Assunção, D.K. Matlock, D.V. Edmonds, The “quenching and partitioning” process: background and recent progress, Mater. Res. 8 (4) (2005) 417–423.

    Article  Google Scholar 

  3. S. Zang, L. Sun, C. Niu, Measurements of Bauschinger effect and transient behavior of a quenched and partitioned advanced high strength steel, Mater. Sci. Eng. A 586 (2013) 31–37.

    Article  Google Scholar 

  4. L. Ding, J. Lin, Z. Pang, L. Zhang, Multiphase constitutive model of ultra-high strength steel QP980 coupling with TRIP effect, J. Plast. Eng. 20 (2013) 23–26 (in Chinese).

    Google Scholar 

  5. F.D. Fischer, Q.P. Sun, K. Tanaka, Transformation-induced plasticity (TRIP), Appl. Mech. Rev. 49 (1996) 317–364.

    Article  Google Scholar 

  6. G.B. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metall. Trans. A 6A (1975) 791–795.

    Article  Google Scholar 

  7. L. Delannay, P. Jacques, T. Pardoen, Modelling of the plastic flow of trip-aided multiphase steel based on an incremental mean-field approach, Int. J. Solids Struct. 45 (2008) 1825–1843.

    Article  Google Scholar 

  8. X. Yang, X. Xiong, Z. Yin, H. Wang, J. Wang, D. Chen, Interrupted test of advanced high strength steel with tensile split Hopkinson bar method, Exp. Mech. 54 (2014) 641–652.

    Article  Google Scholar 

  9. W.J. Dan, W.G. Zhang, S.H. Li, Z.Q. Lin, A model for strain-induced martensitic transformation of TRIP steel with strain rate, Comput. Mater. Sci. 40 (2007) 101–107.

    Article  Google Scholar 

  10. H.Y. Yu, Z.Q. Lin, G.L. Chen, S.H. Li, Overall stress–strain relationship of cold rolled transformation induced plasticity multiphase steels, Mater. Sci. Technol. 21 (3) (2005) 311–316.

    Article  Google Scholar 

  11. J.A. Rodriguez-Martinez, R. Pesci, A. Rusinek, Experimental study on the martensitic transformation in AISI 304 steel sheets subjected to tension under wide ranges of strain rate at room temperature, Mater. Sci. Eng. A 528 (2011) 5974–5982.

    Article  Google Scholar 

  12. R. Ueji, Y. Takagi, N. Tsuchida, K. Shinagawa, Y. Tanaka, T. Mizuguchi, Crystallographic orientation dependence of ε martensite transformation during tensile deformation of polycrystalline 30% Mn austenitic steel, Mater. Sci. Eng. A 576 (2013) 14–20.

    Article  Google Scholar 

  13. P. Verleysen, V. Benedict, T. Verstraete, D. Joris, Numerical study of the influence of the specimen geometry on split Hopkinson bar tensile test results, Latin Am. J. Solids Struct. 6 (2009) 285–298.

    Google Scholar 

  14. R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloyd, M. Finn, High strain rate tensile testing of automotive aluminum alloy sheet, Int. J. Impact Eng. 32 (2005) 541–560.

    Article  Google Scholar 

  15. D.F. Ma, D.N. Chen, S.X. Wu, H.R. Wang, Y.J. Hou, C.Y. Cai, An interrupted tensile testing at high strain rates for pure copper bars, J. Appl. Phys. 108 (2010) 114902.

    Article  Google Scholar 

  16. D.F. Ma, D.N. Chen, S.X. Wu, H.R. Wang, C.Y. Cai, A dynamic investigation of observable void growth and coalescence in pure copper sheets, J. Appl. Phys. 110 (2011) 094905.

    Article  Google Scholar 

  17. R. Gerlach, C. Kettenbeil, N. Petrinic, A new split Hopkinson tensile bar design, Int. J. Impact Eng. 50 (2012) 63–67.

    Article  Google Scholar 

  18. T. Borvik, O.S. Hopperstad, T. Berstad, On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part II. Numerical study, Eur. J. Mech. A Solids 22 (2003) 15–32.

    Article  Google Scholar 

  19. G. Haugou, E. Markiewiczb, J. Fabisa, On the use of the non direct tensile loading on a classical split Hopkinson bar apparatus dedicated to sheet metal specimen characterization, Int. J. Impact Eng. 32 (2006) 778–798.

    Article  Google Scholar 

  20. Y. Chen, A.H. Clausen, O.S. Hopperstad, M. Langseth, Application of a split-Hopkinson tension bar in a mutual assessment of experimental tests and numerical predictions, Int. J. Impact Eng. 38 (2011) 824–836.

    Article  Google Scholar 

  21. R.C. Batra, Z.G. Wei, Instability strain and shear band spacing in simple tensile/compressive deformations of thermoviscoplastic materials, Int. J. Impact Eng. 34 (2007) 448–463.

    Article  Google Scholar 

  22. J.O. Hallquist, LS-DYNA Keywords Use’s Manual (Version 970), LSTC, USA, 2003.

    Google Scholar 

  23. H. Kolsky, An investigation of the mechanical properties of materials at very high rates of loading, Proc. Phys. Soc. B 62 (1949) 676–700.

    Article  Google Scholar 

  24. M. Considerè, L’emploi du fer et Lacier dans Les Construc-tions, Ann. Ponts Chausses 9 (1885) 574.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, W., Ma, D. et al. Dynamic response of a Q&P steel to high-strain-rate tension. Acta Mech. Solida Sin. 30, 484–492 (2017). https://doi.org/10.1016/j.camss.2017.09.003

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.camss.2017.09.003

Keywords

Navigation